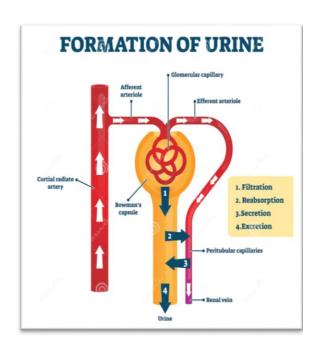


#### Dr.Sura A. Awadh sura.abdailahalek@mustaqbal-college.edu.iq




## **General Urinary System Physiology (Control & Clinical)**

#### General Functions of Renal (Urinary) System

- Produce & expel urine
- A- Regulate the volume and composition of the extracellular fluid
  - Control pH
  - Control blood volume & blood pressure
  - Controls osmolarity –
  - Controls ion balance
- **B-** Production of hormones
  - Renin

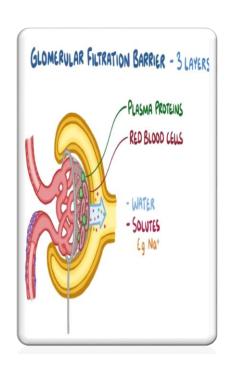
### **Urine Formation**

- 1. Filtration
- 2. Reabsorption
- 3. Secretion
- 4. Excretion





#### Dr.Sura A. Awadh sura.abdailahalek@mustaqbal-college.edu.iq



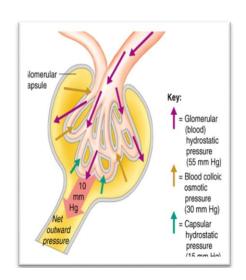

#### **Glomerular Filtration**

A filtrate derived from blood plasma in the glomerulus must pass though a basement membrane of the glomerular capillaries and through slits in the processes of the podocytes, the cells that compose the inner layer of the glomerular (Bowman's) capsule.

- The glomerular ultra-filtrate, formed under the force of blood pressure, has a low protein concentration
- Filtration Pressure

Hydrostatic and Colloid osmotic pressure inside the glomerular capillaries and bowman's capsule




### **Regulation of GFR**

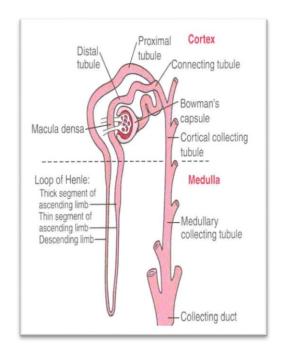
#### The glomerular filtration rate (GFR)

Is the volume of filtrate produced by both kidneys each minute. It ranges from 115 to 125 ml/min.

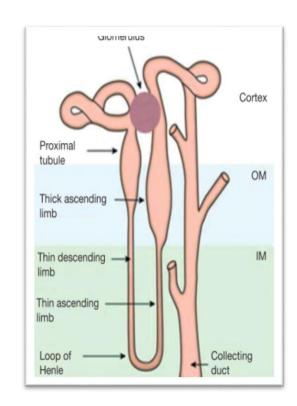
## **Factors Regulating GFR**

- 1. Constriction or dilation of the afferent arterioles by Sympathetic innervation
- 2. Auto regulation by Intrinsic mechanisms of renal blood flow






### Dr.Sura A. Awadh sura.abdailahalek@mustaqbal-college.edu.iq

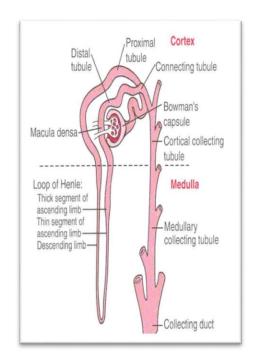



### **Reabsorption of Salt and Water**

- I. Approximately 65% of the filtered salt and water is reabsorbed across the proximal convoluted tubules by the following mechanism:
- **a.**Sodium is actively transported, chloride follows passively by electrical attraction, and water follows the salt out of the proximal tubule
- **b.** Salt transport in the proximal tubules is not under hormonal regulation.



- II. The reabsorption of most of the remaining water occurs as a result of the action of the countercurrent multiplier system in the distal tubules by the following mechanism:
- **a** .Sodium is actively extruded from the ascending limb, followed passively by chloride
- **b** .Since the ascending limb is impermeable to water, the remaining filtrate becomes hypotonic.
- C.Because of this salt transport and because of countercurrent exchange, the tissue fluid of the medulla becomes hypertonic.






#### Dr.Sura A. Awadh sura.abdailahalek@mustaqbal-college.edu.iq



- III. The final stage of reabsorption occurred in the collecting duct which is permeable to water but not to salt in the following mechanism:
- **a.** As the collecting ducts pass through the hypertonic renal medulla, water leaves by osmosis and is carried away in surrounding capillaries.
- **b.** The permeability of the collecting ducts to water is stimulated by antidiuretic hormone (ADH).

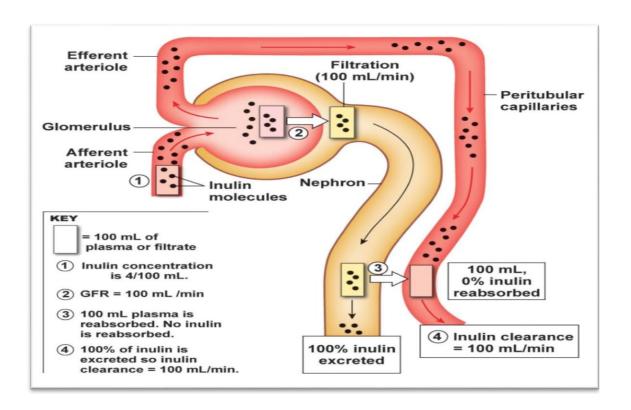


#### **Excretion & Clearance**

**The excretion rate** of a substance (x) depends on:

- The filtration rate of x
- If x is reabsorbed, secreted or both

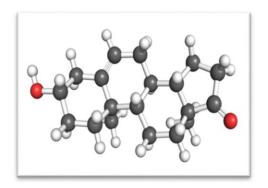
Excretion = Filtration - reabsorption + secretion


#### **Clearance Rate**

- It is done by testing a known substance that should be filtered, but neither reabsorbed or secreted. 100% of the filtered substance is excreted and by monitoring plasma levels of the substance, a clearance rate can be determined.
- 1- Inulin (a plant product) is filtered but neither reabsorbed nor secreted. Its clearance is thus equal to the glomerular filtration rate.
- 2- Some of the filtered urea is reabsorbed. Its clearance is therefore less than the glomerular filtration rate.
- 3- Normally all of the filtered glucose is reabsorbed.



### Dr.Sura A. Awadh sura.abdailahalek@mustaqbal-college.edu.iq



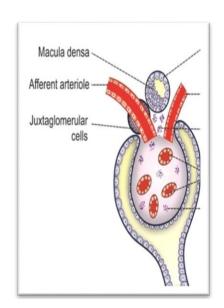


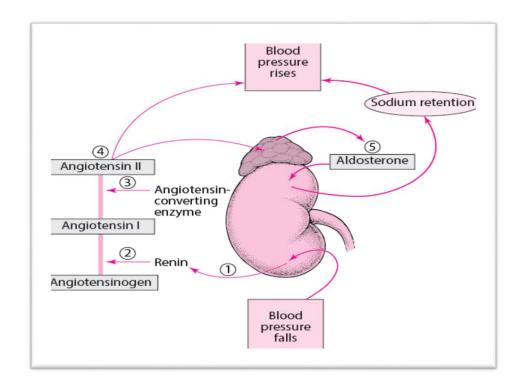

## Renal Physiology (Control & Clinical)

### **Renal Control of Electrolytes**

- -Aldosterone stimulates sodium reabsorption and potassium secretion in the distal convoluted tubule.
- -Aldosterone secretion is stimulated directly by a rise in blood potassium and indirectly by a fall in blood sodium.
- -Aldosterone stimulates the secretion of H+, as well as potassium, into the filtrate in exchange for sodium







### Dr.Sura A. Awadh sura.abdailahalek@mustaqbal-college.edu.iq



## Renin-Angiotensin System Aldosterone Secretion Mechanism

- 1. Decreased blood flow through the kidneys stimulates the secretion of the enzyme renin from the juxtaglomerular apparatus.
- 2. Renin catalyzes the formation of angiotensin I, which is then converted to angiotensin II.
- 3. Angiotensin II stimulates the adrenal cortex to secrete aldosterone.







#### Dr.Sura A. Awadh sura.abdailahalek@mustaqbal-college.edu.iq



#### **Renal Control of Acid-Base Balance**

The nephrons filter bicarbonate and reabsorb the amount required to maintain acidbase balance.

- Reabsorption of bicarbonate, however, is indirect.
- 1. Filtered bicarbonate combines with H<sup>+</sup> to form carbonic acid in the filtrate.
- 2. Carbonic anhydrase in the membranes of microvilli in the tubules catalyzes the conversion of carbonic acid to carbon dioxide and water.
- 3. Carbon dioxide is reabsorbed and converted in either the tubule cells or the red blood cells to carbonic acid, which dissociates to bicarbonate and H<sup>+</sup>.
- 4. In addition to reabsorbing bicarbonate, the nephrons filter and secrete H+, which is excreted in the urine