Entropy

It is the most important thermodynamic property, which serves as measure of the unavailability or degradation of energy. A thermodynamic quantity representing the unavailability of a system's thermal energy for conversion into mechanical work, often interpreted as the degree of disorder or randomness in the system. The entropy of a system is affected only by the nature of the matter under consideration and the state in which it exists. And it is not affect by the external position of the body or its motion relative to other bodies.

- The entropy of the system is increased by the addition of heat through any mechanism or from source.
- The increase in entropy accompanying the addition of a given amount of heat to a system with lowering the temperature at which the heat is added. And its lead to a great degradation of energy than at a higher temperature.
- In addition, in order to complete the definition of entropy, the nature of the process should also be specified. The change in entropy (a state function) is dependent only on the initial and final states and not on the path.
- > The amount of heat transferred to measure the increase in entropy through the term (Q / T) is the degradation of higher forms of energy into heat, which is possible only in a reversible process. Therefore be measured as (Q_R / T) , where Q_R is the heat transferred when the process is occurring reversible.

Equation for a Carnot engine may be written:

$$\frac{|\mathcal{Q}_H|}{T_H} = \frac{|\mathcal{Q}_C|}{T_C}$$

If the heat quantities refer to working fluid in the engine (rather than to the heat reservoirs), the numerical value of QH is positive and that of Qc is negative. The equivalent equation written without absolute-value signs is therefore

$$\frac{Q_H}{T_H} = \frac{-Q_C}{T_C}$$
Or
$$\frac{Q_H}{T_H} + \frac{Q_C}{T_C} = \mathbf{0}$$

Each Carnot cycle has its own pair of isotherms T_H and T_C and associated heat quantities Q_H and Q_C . When the adiabatic curves are so closely spaced that the isothermal steps are infinitesimal, the heat quantities become dQ_H and dQ_C , and equation above for each Carnot cycle is written:

$$\frac{dQ_H}{T_H} + \frac{dQ_C}{T_C} = 0$$

In this equation T_H and Tc, absolute temperatures of the working fluid of the Carnot engines, are also the temperatures traversed by the working fluid of the arbitrary cycle. Summation of all quantities dQ/ T for the Carnot engines leads to the integral:

$$\oint \frac{dQ_{\rm rev}}{T} = 0$$

where the circle in the integral sign signifies integration over the arbitrary cycle, and the subscript "rev" indicates that the cycle is reversible. Thus the quantities Qrev/T sum to zero for the arbitrary cycle, exhibiting the characteristic of a property. The property is called entropy, and its differential changes are:

$$dS^t = \frac{d_{Qrev}}{T}$$

Where : S^t the total (rather than molar) entropy of the system. Alternatively,

$$dQ_{\rm rev} = T \, dS^t$$

If a process is reversible and adiabatic, $dQ_{rev} = 0$; $dS^t = 0$. Thus the entropy of a system is constant during a reversible adiabatic process, and the process is said to be isentropic.

The change in entropy of any system undergoing a finite reversible process is:

$$\Delta S' = \int \frac{dQ_{\rm rev}}{T}$$

Integration is not carried out for the irreversible path. Since entropy is a state function, the entropy changes of the irreversible and reversible processes are identical.

*The mathematical statement of the second law is that every process proceeds in such a direction the total entropy changes ΔS^t associated with it is always positive, the process is possible.

$$\Delta S_{total} \geq \mathbf{0}$$

This mathematical statement of the second law affirms that every process proceeds in such a direction that the total entropy change associated with it is positive, the limiting value of zero being attained only by a reversible process. No process is possible for which the total entropy decreases.

Entropy Changes of an Ideal Gas:

For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, becomes:

$$dU = dQ_{\rm rev} - P \, dV$$

Differentiation of the defining equation for enthalpy, H = U + PV, yields:

$$dH = dU + P \, dV + V \, dP$$

Eliminating **dU** gives:

$$dH = dQ_{rev} - P \, dV + P \, dV + V \, dP$$
$$dQ_{rev} = dH - V \, dP$$

or For an ideal gas, $dH = C_p^{ig}$. dT and V = RT/P. With these substitutions and then division by T,

$$\frac{d_{Qrev}}{T} = C_P^{ig} \frac{dT}{T} - R \frac{dP}{P}$$
$$dS = C_P^{ig} \frac{dT}{T} - R \frac{dP}{P}$$

this becomes:

$$\frac{dS}{R} = \frac{C_P^{ig}}{R}\frac{dT}{T} - d\ln P$$

Where : **S** is the molar entropy of an ideal gas. Integration from an initial state at conditions T_0 and P_0 to a final state at conditions T and P gives:

$$\frac{\Delta S}{R} = \int_{T_0}^T \frac{C_P^{ig}}{R} \frac{dT}{T} - \ln \frac{P}{P_0}$$

Although derived for a mechanically reversible process, this equation relates properties only, and is independent of the process causing the change of state. It is therefore a general equation for the calculation of entropy changes of an ideal gas.

$$\langle C_P^{ig} \rangle_{\mathcal{S}} = \frac{\int_{T_0}^T C_P^{ig} dT/T}{\ln(T/T_0)}$$

$$\int_{T_0}^T C_P^{ig} \frac{dT}{T} = \langle C_P^{ig} \rangle_S \ln \frac{T}{T_0}$$

$$\frac{\Delta S}{R} = \frac{\langle C_P^{ig} \rangle_S}{R} \ln \frac{T}{T_0} - \ln \frac{P}{P_0}$$

This form of the equation for entropy changes of an ideal gas may be useful when iterative calculations are required.

It can be calculate the $C_p{}^{ig}$ from the equation below and depanding on the APPENDIX C and D

$$(C_{p}^{ig})s/R = A + B \cdot T_{lm} + T_{am} \cdot T_{lm} \left[C + \frac{D}{(T_{1} \cdot T_{2})^{2}} \right]$$
$$T_{am} = \frac{T_{1} + T_{2}}{2}$$
$$T_{lm} = \frac{T_{2} - T_{1}}{\ln(T_{2} - T_{1})}$$

Chemical species		T_{max}	$C_{P_{20}}^{\prime g}/R$	Α	$10^3 B$	10 ⁶ C	10-5
Paraffins:							
Methane	CH ₄	1500	4.217	1.702	9.081	-2.104	
Ethane	C_2H_6	1500	6.369	1.131	19.225	-5.501	
Propane	C_3H_8	1500	9.001	1.213	28.785	-8.824	
n-Butane	C_4H_{10}	1500	11.928	1.955	30.915	-11.402	
150-Butane	C_4H_{10}	1500	11901	1.0//	57.855	-11.945	
n-Pentane	C ₅ H ₁₂	1500	14./31	2.404	40.001	-14.111	
n-Hexane	C ₆ H ₁₄	1500	17.550	3.025	35.722	-10./91	
n-Heptane	C7H10	1500	20.301	5.570	02.127	-19.480	
n-Octane	C8H18	1500	25.174	4.108	/0.50/	-22.208	
1-Alkenes:			_				
Ethylene	C_2H_4	1500	5.325	1.424	14.394	-4.392	
Propylene	C_3H_6	1500	7.792	1.057	22.706	-0.915	
I-Butene	C_4H_8	1500	10.520	1.967	31.630	-9.873	
1-Pentene	C ₅ H ₁₀	1500	13.437	2.691	39.753	-12.447	
I-Hexene	$C_{6}H_{12}$	1500	16.240	3.220	48.189	-15.157	
I-Heptene	$C_7 H_{16}$	1500	19.053	3.768	20.288	-17.847	
1-Octene:	C ₈ H ₁₆	1500	21.868	4.324	64.960	-20.521	
Miscellaneous organics:							
Acetaldehyde	C_2H_4O	1000	6.506	1.693	17.978	-6.158	
Acetylene	C_2H_2	1500	5.253	6.132	1.952		-1.29
Benzene	C_6H_6	1500	10.259	-0.206	39.064	-13.301	
1,3-Butadiene	C_4H_6	1500	10.720	2.734	26.786	-8.882	
Cyclohexane	C6H12	1500	13.121	-3.876	63.249	-20.928	
Ethanol	C_2H_5O	1500	8.948	3.518	20.001	-6.002	
Ethylbenzene	C_8H_{10}	1500	15.993	1.124	55.380	-18.476	
Ethyleneoxide	C_2H_4O	1000	5.784	-0.385	23.463	-9.296	
Formaldehyde	CH_2O	1500	4.191	2.264	7.022	-1.877	
Methanol	CH_4O	1500	5.547	2.211	12.216	-3.450	
Styrene	C_8H_8	1500	15.534	2.050	50.192	-16.662	
Toluene	C_7H_8	1500	12.922	0.290	47.052	-15.716	
Miscellaneous inorganics:							
Air		2000	3.509	3.355	0.575		-0.010
Ammonia	NHB	1800	4.269	3.578	3.020		-0.180
Bromine	Br_2	3000	4.337	4,493	0.056		-0.15
Carbon monoxide	CO	2500	3.507	3.376	0.557		-0.031
Carbon dioxide	CO_2	2000	4.467	5.457	1.045		-1.15
Carbon disulfide	CS_2	1800	5.532	6.311	0.805		-0.900
Chlorine	CI_2	3000	4.082	4.442	0.089		-0.34
Hydrogen	H_2	3000	3.468	3.249	0.422		0.08
Hydrogen sulfide	H_2S	2300	4.114	3.931	1.490		-0.232
Hydrogen chloride	HCl	2000	3.512	3.156	0.623		0.15
Hydrogen cyanide	HCN	2500	4.326	4.736	1.359		-0.725
Nitrogen	N_2	2000	3.502	3.280	0.593		0.04
Nitrous oxide	N_2O	2000	4.646	5.328	1.214		-0.928
Nitric oxide	NO	2000	3.590	3.387	0.629		0.01
Nitrogen dioxide	NO2	2000	4.447	4.982	1.195		-0.792
Dinitrogen tetroxide	N_2O_4	2000	9.198	11.660	2.257		-2.787
Oxygen	O_2	2000	3.535	3.639	0.506		-0.227
Sulfur dioxide	SO_2	2000	4.796	5.699	0.801		-1.015
Sulfur trioxide:	SO3	2000	6.094	8.060	1.056		-2.028
Water	H_2O	2000	4.038	3.470	1.450		0.121

example of the C_p values for ideal gas from Appendix C

Since

Liquid Entropy:

Consider unit mass of a liquid which will ultimately be raised to unit mass of vapor at constant pressure. For the unit mass of liquid,

$$dQ = C_{pL} dT$$

where: C_{pL} is specific heat capacity of the liquid at constant pressure. Dividing eq. throughout by T,then,

$$dQ/T = C_{pL} dT/T$$

 $dS = dQ/T$
 $dS = CpL dT/T$

Integrating this equation from initial state to final state:

$$\Delta S = [S2 - S1] = CpL. ln (T2/T1)$$

Example A 40 kg steel casting ($C_p = 0.5 \text{ kJ kg}^{-1} \text{ K}^{-1}$) at tempreture of 723.15 K (450C) is quenched in 150 kg of oil ($C_p = 2.5 \text{ kJ kg}^{-1} \text{ K}^{-1}$) at 298.15 K (25 C). If there is no heat losses what is the change in the entropy of (a) the casting (b) the oil (c) both considered together.

Salution: the final tempreture T_2 of the oil and the steel casting is founded by the energy balance. Since the change in energy of the oil and steel casting together must be zero

$$(40)(0.5)(T - 723.15) + (150)(2.5)(T - 298.15) = 0$$

Solution yields T = 319.67 K (46.52 C)

a) Change in the entropy of the casting

$$\Delta S = \int \frac{dQ}{T} = m \int \frac{C_p dt}{T} = m C_p ln \frac{T_2}{T_1}$$

$$(40)(0.5) ln \frac{319.67}{723.15} = -16.33 \, kJK^{-1}$$

b) Change entropy for the oil

$$\Delta S = (150)(2.5)ln \frac{319.67}{298.15} = 26.13 \, kJ \, K^{-1}$$

c) Total entropy change

$$\Delta S_{total} = -16.33 + 26.13 = 9.80 \, kJ \, K^{-1}$$