CORROSION KINETICS

FARADAY'S LAWS OF ELECTROLYSIS AND ITS APPLICATION IN DETERMINING THE CORROSION RATE

The classical electrochemical work conducted by Michael Faraday in the nineteenth century produced two laws published in 1833 and 1834 named after him. The two laws can be summarized below.

The First Law:

The mass of primary products formed at an electrode by electrolysis is directly proportional to the quantity of electricity passed. Thus:

$$m \propto It \text{ or } m = ZIt$$
 (1)

where

I= current in amperes

t = time in seconds

m = mass of the primary product in grams

Z = constant of proportionality (electrochemical equivalent). It is the mass of a substance liberated by 1 ampere-second of a current (1 coulomb).

The Second Law:

The masses of different primary products formed by equal amounts of electricity are proportional to the ratio of molar mass to the number of electrons involved with a particular reaction:

$$m_1 \propto \frac{M_1}{n_1} \propto Z_1$$
2
 $m_2 \propto \frac{M_2}{n_2} \propto Z_2$ 3

where

m1,m2 = masses of primary product in grams

M1, M2 = molar masses $(g.mol^{-1})$

n1, n2= number of electrons

Z1, Z2 = electrochemical equivalent.

Combining the first law and the second law, as in equation:

m = Zit

Substituting for Z, from equation 2 in 1

$$m = k \frac{M}{n} It \qquad \dots 4$$

or

$$m = \frac{1}{F} \cdot \frac{M}{n} It \qquad \dots \dots 5$$

where F = Faraday's constant. It is the quantity of electricity required to deposit the ratio of mass to the valency of any substance and expressed in coulombs per mole (C (g equiv.)-1). It has a value of 96 485 coulombs per gram equivalent. This is sometimes written as 96 485 coulombs per mole of electrons.

Applications of Faraday's Laws in Determination of Corrosion Rates of

Metals & Alloys

Corrosion rate has dimensions of mass x reciprocal of time:

$$(g \cdot y^{-1} \text{ or } \mathrm{kg} \cdot s^{-1})$$

In terms of loss of weight of a metal with time, from equation (5), we get:

$$\frac{dw}{dt} = \frac{MI}{nF} \quad (I = \text{current}) \qquad \dots \dots 6$$

The rate of corrosion is proportional to the current passed and to the molar mass. Dividing equation (5) by the exposed area of the metal in the alloy, we get

$$\frac{w}{At} = \frac{MI}{nFA} \qquad \dots \dots 7$$

The above equation has been successfully used to determine the rates of corrosion. A very useful practical unit for representing the corrosion rate is milligrams per decimeter square per day (mg.dm⁻².day⁻¹) or mdd. Other practical units are millimeter per year (mm y⁻¹)

Below are some examples showing how Faraday's laws are used to determine the corrosion rate.) and mils per year (mpy).

Table 1.5 Standard potential series							
Electrode	Reaction	$E_{\rm red}^{\circ}$ (V)					
Li ⁺ , Li	$Li^+ + e^- \rightarrow Li$	-3.024					
K ⁺ , K	${\rm K}^+ + {\rm e}^- ightarrow {\rm K}$	-2.924					
Ca ²⁺ , Ca	$Ca^{2+} + 2e^- \rightarrow Ca$	-2.87					
Na ⁺ , Na	$Na^+e^- \rightarrow Na$	-2,714					
Mg ²⁺ , Mg	$Mg^{2+} + 2 e^- \rightarrow Mg$	-2.34					
Ti ²⁺ , Ti	$Ti^{2+} + 2 e^- \rightarrow Ti$	-1.75					
AI^{3+} , AI	$AI_{a}^{3+} + 3 e^{-} \rightarrow AI$	-1.67					
Mn ²⁺ , Mn	$Mn^{2+}_{2} + 2e^{-} \rightarrow Mn$	-1.05					
Zn ²⁺ , Zn	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.761					
Cr^{3+} , Cr	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.71					
Fe^{2+} , Fe	$Fe_{2+}^{2+} + 2e^- \rightarrow Fe$	-0.441					
Co^{2+} , Co	$\text{Co}_{2+}^{2+} + 2 \text{ e}^- \rightarrow \text{Co}$	-0.277					
Ni^{2+} , Ni	$Ni_{2+}^{2+} + 2e^- \rightarrow Ni$	-0.250					
Sn^{2+} , Sn^{2+}	$\operatorname{Sn}_{2+}^{2+} + 2 \operatorname{e}^{-} \to \operatorname{Sn}_{2+}$	-0.140					
Pb^{2+}, Pb	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.126					
Fe ³⁺ , Fe	$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.036					
H^{+}, H_2	$2 H^{+} + 2 e^{-} \rightarrow H_2$	-0,000					
Saturated calomel	$Hg_2CI_2 + 2e^- \rightarrow 2Hg + 2CI$ (Sat. KCI)	0.244					
Cu ⁻⁺ ,Cu	$Cu^{-1} + 2e \rightarrow Cu$	0.344					
Cu ² ,Cu	$Cu^2 + e^2 \rightarrow Cu^2$	0.522					
Hg_2^{2+} , Hg	$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.798					
Ag ⁺ , Hg	$Ag^{2+} + 2e^- \rightarrow 2Hg$	0.799					
Pd ⁺ , Pd	$Pd^+ + 2 e^- \rightarrow Pd$	0.83					
Hg ⁺ , Hg	${ m Hg^+} + { m e^-} ightarrow { m Hg}$	0.854					
Pt^{2+} , Pt	$Pt^{2+} + 2 e^- \rightarrow Pt$	1.2 (ca)					
Au ³⁺ , Au	$Au^{3+} + 3e^- \rightarrow Au$	1.42					
Au ⁺ , Au	$Au^+ + e^- \rightarrow Au$	1.68					

 Table 1.5
 Standard potential series

Fourth Class

Corrosion

Element	Symbol	Atomic Number	Molar mass/	Element	Symbol	Atomic Number	Molar mass/
			(g mor-)				(g moi ·)
Actinium	Ac	89	227.03	Mercury	Hg	80	200.59
Aluminium	AL	13	26.98	Molybdenum	Mo	42	95.94
Americium	Am	95	(243)	Neodymium	Nd	60	144.24
Antimony	Sb	51	121.75	Neon	Ne	10	20.18
Argon	Ar	18	39.95	Neptunium	Np	93	(237.05)
Arsenic	As	33	74.92	Nickel	NI.	28	58.71
Aslatine	N.	85	210	Nioblum	Nb	41	92.91
Bartum	Ba	56	137.34	Nitrogen	N		14.0067
Berkellum	Bk	97	(247)	NOOPHILIM	190	102	(200)
Beryllium	Be		9.01	Oscillari	<u>6</u>	<i>(</i> 2	180.2
Desmuun	DI	0.3	200.00	Palladhum	P.4	48	106.4
Donnum	DOL DOL	107	10.01	Phoendromes	P	15	30.97
Brombae	Br	25	79.91	Platinum	PL.	78	195.09
Cadentum	64	48	112.40	Phytomhum	Pu	94	(244)
Carshim	Ca.	55	132.91	Polonham	Po	84	210
Calcium	Ğ	20	40.08	Potassium	R	19	39,10
Californium	Cr	98	251.08	Praseodymtum	Pr	59	140.91
Carbon	C	6	12.01	Promethium	Pm	61	(145)
Certum	Ce	58	140.12	Protectinium	Pa	91	231.04
Chlorine	CI	17	35.45	Badhum	Fish	88	(226)
Chromhum	Cr	24	52.00	Radon	Fitte	86	(222)
Cobalt	Co	27	58.93	Fühenhum	Re	75	186.2
Copper	Cu	29	63.54	Fihodhum	Rh	45	102.91
Curtum	Cm	96	247.07	Rubidium	Rb	37	85.47
Dubnium	Db	105	(263)	Rathentum	Pas	44	101.07
Dysproslum	Dy	66	162.50	Rutherfordium	R	104	(261)
Einsteinium	Es	99	(252)	Sementum	Sm	62	150.35
Erblum	Br	68	167.26	Scandhum	Sc	21	44.96
Europhum	Eu	63	151.96	Seaborghum	26	106	(266)
Fermium	Pin	100	(257.10)	Oriteren	00	04	20.00
Fluorine	2		19.00	Official	01 A.a	47	107.97
Francium	PT Out	87	(223)	Seditor	25		22.00
Cocourteant	Cia Cia	01	60.72	Stronthim	Se	38	87.62
Countin	Cas.	01	70.41	Sadahar	8	16	32.08
Cold	Cate Ann	22	196.97	Tortohom	Te	73	180.95
Hafnhum	HC	72	178.49	Technetium	Ťc	43	(98.91)
Heeshmo	Ha	108	(260)	Tellurtum	Te	52	127.60
Heltum	He		4.00	Terbium	Tb	65	158.92
Holmturn	Ho	67	164.93	Thalltum	T1	81	204.37
Hydrogen	H	1	1.0079	Thorium	Th	90	232.04
Indium	In	49	114.82	Thultum	Tm	69	168.93
Todine	I	53	126.90	Tin	Sn	50	118.69
Intditum	Ir	77	192.2	Tilanhum	TI	22	47.88
Iron	Fe	26	55.85	Tungsten	W	74	183.85
Rrypton	Br	36	83.80	Ununblum	Uub	112	(277)
Lanthanum	La.	57	138.91	Ununnflum	Uun	110	(269)
Lawrenchum	Lr	103	(262.1)	Unununlum	Uuu	111	(272)
Lead	Pb	82	207.19	Uranium	U.	92	238.03
Lithium	LL LL	3	6.94	Variaditum	V.	2225	50.94
Luiethum	La	71	174.96	Xenon	Xe	04	131.30
Magnesium	ME	12	24.31	T GETORIM Vitebase	TD V	20	173.04
Manganese	Mitt	20	04.94	Zine	2	39	00.91
Mennentin	ML.	109	(266)	They see to see	2-	40	00.07
MENGESEVILLIII	300	101	205.10	- AMERICA (1997)	al.iti	-10	10 1 - AL

The value given in parenthesis is the molar mass of the isotope of largest known half-life.

Example 1

Steel corrodes in an aqueous solution, the corrosion current is measured as 0.1 mA \cdot cm⁻². Calculate the rate of weight loss per unit area in units of mdd.

Solution

For Fe \longrightarrow Fe⁺² + 2e

$$\frac{w}{At} = \frac{Mi}{nF}$$

Where:

$$\frac{w}{At} = 2.897 \times 10^{-8} \,\mathrm{g} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$$

Now converting g to mg (x 10^3), we get

$$\frac{w}{At}$$
 = 2.897 x 10⁻⁵ mg cm⁻² s⁻¹

$$2.897 \times 10^{-5} \frac{mg}{cm^2 s} * \frac{100cm^2}{dm^2} * \frac{24h}{day} * \frac{3600 s}{h} = 250.3 mdd$$

Example 2

Iron is corroding in seawater at a current density of $1.69 \times 10^{-4} \text{ A/cm}^2$. Determine the corrosion rate in

(a) mdd (milligrams per decimeter² day)

(b) ipy (inches per year) (density for Iron = 7.86)

Solution

(a) Apply Faraday's law $\frac{w}{At} = \frac{Mi}{nF}$

 $= 422.8 \text{ mg dm}^{-2} \text{ day}^{-1}$

(b) ipy = mdd * 0.00144/
$$\rho$$
, ρ = density
= 422.8 × $\frac{0.00144}{7.86}$ = 0.077 ipy

Example 3

A sample of zinc anode corrodes uniformly with a current density of 4.27×10^{-7} A/cm² in an aqueous solution. What is the corrosion rate of zinc in mdd?

Penetration unit time can be obtained by dividing equation (8) by density of the alloy. The following equation can be used conveniently:

Corrosion rate,
$$r = C \cdot \frac{Mi}{n\rho}$$
9

where

ρ = density (g/cm³)
i = current density (A/cm²)
M = atomic weight (g • mol⁻¹)
n = number of electrons involved
C = constant which includes F and any other conversion

C = constant which includes F and any other conversion factor for units (depending on units)

= **0.129** in mpy

= 3.27 in mm/y

For instant, the above relationship can be used to establish the equivalent of corrosion current of 1 μ A/cm² with the rate of corrosion for iron in mpy as shown below

$$1 \ \mu \text{A/cm}^2 = 0.129 \left[\frac{(55.8)(1)}{(2)(7.86)} \right] = 0.46 \text{ mpy}$$

Example 4

A sample of zinc corrodes uniformly with a current density of $4.2 \times 10^{-6} \text{ A/cm}^2$ in an aqueous solution.

- (a) What is the corrosion rate of zinc in mg/dm^2
- (b) What is the corrosion rate of zinc in mm/year?

Solution

(a) Given current density, $i = 4.2 \times 10^{-6} \text{ A/cm}^2$, zinc atomic weight, M = 65.38 g/mol, density, $\rho = 7.1 \text{ g/cm}^3$, n = 2, F = 96 485 coulombs/mole.

$$\frac{w}{At} = \frac{Mi}{nF}$$

$$\frac{65.38 \times 4.2 \times 10^{-6}}{2 \times 96485} = 1.42 \times 10^{-9} \frac{g}{cm^2 s}$$

Now converting g to mg (x 10³), we get = $1.42 \times 10^{-6} \frac{mg}{cm^2 s}$

$$1.42 \times 10^{-6} \frac{mg}{cm^2 s} * \frac{100cm^2}{dm^2} * \frac{24h}{day} * \frac{3600 s}{h} = 12.27 \ mdd$$

(b) We can also use the relationship given below to determine the rate of corrosion in mm/year or other units by changing the constants. The constant for mm/year is 0.00327.

Corrosion rate,
$$r = C \cdot \frac{Mi}{n\rho}$$

Where ρ is the density in g/cm³, *i* is the current density in μ A/cm², and C is the constant = 0.00327 for mm/year.

 $\text{Corrosion rate} = \frac{0.00327 \times 65.38 \,\text{g/mol} \times 4.2}{2 \times 7.13}$

Corrosion rate = 0.0629 mm/year

Example 5

AISI 316 steel has the following nominal composition:

 $\rho = 7.1 \text{ g/cm}^2$ At. wt. = 52.01 g/mol Cr = 18%n = 1 Ni = 8% $\rho = 8.9 \text{ g/cm}^2$ At. wt. = 58.68 g/mol n = 2 $\rho = 10.2 \text{ g/cm}^2$ At. wt. = 95.95 g/mol Mo = 3%n = 1 $\rho = 7.86 \text{ g/cm}^2$ At. wt. = 55.85 g/mol Fe = 70%n = 2Find the equivalence between the current density of $1 \,\mu\text{A/cm}^2$ and the corrosion rate (mpy).

Solution:

$$Corrosion rate = C \cdot \frac{Mi}{n\rho}$$

Where C is the constant for conversion depending on unit.

$$C.R = 0.129 \left\{ \left(\frac{52.01}{1 \times 7.1} \right) 0.18 + \left(\frac{58.68}{2 \times 8.9} \right) 0.08 + \left(\frac{95.95}{1 \times 10.2} \right) 0.03 + \left(\frac{55.85}{2 \times 7.86} \right) 0.70 \right\}$$

= 0.129 [1.318 + 0.263 + 0.282 + 2.48]
= 0.55 mpy (mils/year)