Numerical Analysis Chemical Engineering & Petroluem Industreis Department Third Year

NUMERICAL METHODS

VI SEMESTER

CORE COURSE

B Sc MATHEMATICS

(2011 Admission)

UNIVERSITY OF CALICUT

SCHOOL OF DISTANCE EDUCATION

Calicut university P.O, Malappuram Kerala, India 673 635.

359

Contents			Page No.
MODULE I	1	Fixed Point Iteration Method	6
	2	Bisection and Regula False Methods	18
	3	Newton Raphson Method etc.	32
	4	Finite Differences Operators	51
MODULE II	5	Numerical Interpolation	71
	6	Newton's and Lagrangian Formulae – Part I	87
	7	Newton's and Lagrangian Formulae – Part II	100
	8	Interpolation by Iteratio <mark>n</mark>	114
	9	Numerical Differentiaton	119
	10	Numerical Integration	128
MODULE III	11	Solution of System of Linear Equations	140
	12	Solution by Iterations	161
	13	Eigen Values	169
MODULE IV	14	Taylor Series Method	179
	15	Picard's Iteration Method	187
	16	Euler Methods	195
	17	Runge – Kutta Methods	203
	18	Predictor and Corrector Methods	214

Numerical Methods

INTRODUCTION

- Numerical analysis is the study of algorithm that use numerical approximation for the problems of mathematical analysis.
- The goal of the field of numerical analysis is the design and analysis of techniques to give approximate but accurate solutions to hard problems

Error in Numerical Computation

Due to errors that we have just discussed, it can be seen that our numerical result is an approximate value of the (sometimes unknown) exact result, except for the rare case where the exact answer is sufficiently simple rational number.

If \tilde{a} is an approximate value of a quantity whose exact value is a, then the difference $\varepsilon = \tilde{a} - a$ is called the absolute error of \tilde{a} or, briefly, the error of \tilde{a} . Hence, $\tilde{a} = a + \varepsilon$, i.e.

Approximate value = True value + Error.

For example, if $\tilde{a} = 10.52$ is an approximation to a = 10.5, then the error is $\varepsilon = 0.02$. The relative error, ε_r , of \tilde{a} is defined by

$$\left| \varepsilon_{\mathbf{r}} \right| = \frac{\left| \varepsilon \right|}{\left| a \right|} = \frac{\left| \text{Error} \right|}{\left| \text{Truevalue} \right|}$$

For example, consider the value of $\sqrt{2}$ (=1.414213...) up to four decimal places, then

$$\sqrt{2} = 1.4142 + \text{Error}$$
.

taking 1.41421 as true or exact value. Hence, the relative error is

$$\varepsilon_{\mathbf{r}} = \frac{0.00001}{1.4142}$$
.

In this chapter and in the coming chapters, we present the following indirect or iterative methods with illustrative examples:

- 1. Fixed Point Iteration Method
- 2. Bisection Method
- 3. Method of False Position (Regula Falsi Method)
- 4. Newton-Raphson Method (Newton's method)

Numerical Methods Page 11

1- Fixed Point Method

Example Solve $f(x) = x^2 - 3x + 1 = 0$, by fixed point iteration method.

Solution

Write the given equation as

$$x^2 = 3x - 1$$
 or $x = 3 - 1/x$.

Choose
$$f(x) = 3 - \frac{1}{x}$$
. Then $f(x) = \frac{1}{x^2}$ and $|f(x)| < 1$ on the interval $(1, 2)$.

Hence the iteration method can be applied to the Eq. (3).

The iterative formula is given by

$$x_{n+1} = 3 - \frac{1}{x_n}$$
 $(n = 0, 1, 2, ...)$

Starting with, $x_0 = 1$, we obtain the sequence

$$x_0$$
=1.000, x_1 =2.000, x_2 =2.500, x_3 = 2.600, x_4 =2.615, . . .

Example Find a real root of the equation $x^3 + x^2 - 1 = 0$ on the interval [0, 1] with an accuracy of 10^{-4} .

To find this root, we rewrite the given equation in the form

$$x = \frac{1}{\sqrt{x+1}}$$

Take

$$f(x) = \frac{1}{\sqrt{x+1}}$$
. Then $f(x) = -\frac{1}{2} \frac{1}{(x+1)^{\frac{3}{2}}}$

$$\max_{[0,1]} |\mathcal{F}(x)| = \left| \frac{1}{2\sqrt{8}} \right| = k = 0.17678 < 0.2.$$

Choose
$$f(x) = 3 - \frac{1}{x}$$
. Then $f(x) = \frac{1}{x^2}$ and $|f(x)| < 1$ on the interval $(1, 2)$.

Hence the iteration method gives:

$$n$$
 x_n $\sqrt{x_n+1}$ $x_{n+1} = 1/\sqrt{x_n+1}$
 0 0.75 1.3228756 0.7559289
 1 0.7559289 1.3251146 0.7546517
 2 0.7546617 1.3246326 0.7549263

At this stage,

$$|x_{n+1} - x_n| = 0.7549263 - 0.7546517 = 0.0002746,$$

Example Use the method of iteration to find a positive root, between 0 and 1, of the equation $xe^{x} = 1$.

Writing the equation in the form

We find that
$$f(x) = e^{-x}$$
 and so $f(x) = -e^{-x}$.

Hence |f(x)| < 1 for x < 1, which assures that the iterative process defined by the equation $x_{n+1} = f(x_n)$ will be convergent, when x < 1.

The iterative formula is

$$x_{n+1} = \frac{1}{e^{x_n}}$$
 $(n = 0, 1, ...)$

Starting with $x_0 = 1$, we find that the successive iterates are given by

$$x_1 = 1/e = 0.3678794, x_2 = \frac{1}{ex_1} = 0.6922006,$$
 $x_3 = 0.5004735, x_4 = 0.6062435,$
 $x_5 = 0.5453957, x_6 = 0.5796123,$

We accept 6.5453957 as an approximate root.

Example Find a solution of $f(x) = x^3 + x - 1 = 0$, by fixed point iteration.

$$x^3 + x - 1 = 0$$
 can be written as $x(x^2 + 1) = 1$, or $x = \frac{1}{x^2 + 1}$.

Note that

$$|\mathcal{F}(x)| = \frac{2|x|}{\left(1+x^2\right)^2} < 1$$
 for any real x ,

so by the Theorem we can expect a solution for any real number x_0 as the starting point.

Choosing $x_0 = 1$, and undergoing calculations in the iterative formula

$$x_{n+1} = f(x_n) = \frac{1}{1+x_n^2}$$
 $(n = 0, 1, ...),$...(4)

we get the sequence

$$x_0=1.000$$
, $x_1=0.500$, $x_2=0.800$, $x_3=0.610$, $x_4=0.729$, $x_5=0.653$, $x_6=0.701$, ...

and we choose 0.701 as an (approximate) solution to the given equation.

Example Find the root of the equation $2x = \cos x + 3$ correct to three decimal places.

We rewrite the equation in the form

$$x = \frac{1}{2}(\cos x + 3)$$

so that

$$f = \frac{1}{2}(\cos x + 3),$$

and

$$|\mathcal{F}(x)| = \left|\frac{\sin x}{2}\right| < 1.$$

Hence the iteration method can be applied to the eq. (3) and we start with $x_0 = p/2$. The successive iterates are

$$x_1 = 1.5,$$
 $x_2 = 1.535,$ $x_3 = 1.518,$ $x_4 = 1.526,$ $x_5 = 1.522,$ $x_6 = 1.524,$ $x_7 = 1.523,$ $x_8 = 1.524.$

We accept the solution as 1.524 correct to three decimal places.