Resultant of Concurrent Force system:

2. Resolution of forces method:

- More than two concurrent forces.

Earlier, the method of resolving a vector into its components was thoroughly discussed. it was said that any vector that is directed at an angle to one of the coordinate axis can be considered to have two parts - each part being directed along one of the axes - either horizontally or vertically. The parts of the single vector are called components and describe the influence of that single vector in that given direction.

$$
\begin{aligned}
& F=400 \mathrm{~N} \\
& \sin 60^{\circ}=\frac{F_{y}}{400 \mathrm{~N}} \quad \cos 60^{\circ}=\frac{F_{x}}{400 \mathrm{~N}} \\
& F_{y}=400 \mathrm{~N} * \sin 60^{\circ} \\
& F_{y}=346 \mathrm{~N}
\end{aligned}
$$

Steps to solve the problems of resolution of forces method:

1. Resolve the forces acting at an angle, along $X \& Y$ axis.
2. Add all horizontal forces to get ΣF_{X}.
3. Add all vertical forces to get ΣF_{Y}.
4. Find the magnitude of the resultant:

$$
\mathbf{R}=\sqrt{ }\left(\Sigma F_{X}{ }^{2}+\Sigma F_{Y}{ }^{2}\right) .
$$

5. $\theta=\tan ^{-1} \frac{\Sigma \mathrm{Fy}}{\Sigma \mathrm{Fx}}$ (neglect the negative sign).
6. $\Sigma F_{X} \quad \Sigma F_{Y}$

+	+	I
-	+	II
-	-	III
+	-	IV

Notes:

1. If the resultant force equals zero that's mean that,
$\Sigma \mathrm{F}_{\mathrm{X}}=0 \& \Sigma \mathrm{~F}_{\mathrm{Y}}=0$
2. If the resultant force is vertical this means that,
$\Sigma \mathrm{F}_{\mathrm{X}}=\mathbf{0} \quad \& \quad \mathrm{R}=\Sigma \mathrm{F}_{\mathrm{Y}}$ \square
3. If the resultant force is horizontal this means that,
$\boldsymbol{\Sigma} \mathrm{F}_{\mathrm{Y}}=\mathbf{0} \quad \& \quad \mathrm{R}=\Sigma \mathrm{F}_{\mathrm{X}}$

4. If the resultant is directed at an angle to one of the coordinate axis, it can be resolved to its horizontal and vertical components.

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{X}}=\Sigma \mathbf{F}_{\mathbf{X}} \\
& \mathbf{R}_{\mathbf{Y}}=\Sigma \mathbf{F}_{\mathbf{Y}}
\end{aligned}
$$

5. $\cos (a+b)=\cos a \cos b-\sin a \sin b$ $\cos (a-b)=\cos a \cos b+\sin a \sin b$
$\sin (a+b)=\sin a \cos b+\cos a \sin b$
$\sin (a-b)=\sin a \cos b-\cos a \sin b$

Example 1: Find the resultant force and its direction for the figure below

Sol.:

$\Sigma \mathbf{F x}_{\mathrm{x}}=22.5 \cos 45^{\circ}-30 \cos 30^{\circ}$ $=-10.071 \mathrm{~N}$
$\boldsymbol{\Sigma} \mathbf{F}_{\mathbf{Y}}=15+22.5 \sin 45^{\circ}-30 \sin 30^{\circ}$
$=15.9 \mathrm{~N}$

$$
\mathbf{R}=\sqrt{ }\left(\Sigma \mathrm{F}_{\mathrm{X}}{ }^{2}+\Sigma \mathrm{F}_{\mathrm{Y}^{2}}\right)
$$

$$
=\sqrt{ }\left(-10.071^{2}+15.9^{2}\right)
$$

$$
=18.83
$$

$\boldsymbol{\theta}=\tan ^{-1} \frac{\Sigma \mathrm{Fy}}{\Sigma \mathrm{Fx}}$
$=\tan ^{-1} \frac{15.9}{10.071}=57.65^{\circ}$
$\mathrm{R}=18.83, \boldsymbol{\theta}=57.65^{\circ}$

Example 2: Find the value of angle α if the resultant is vertical. Also, find the magnitude of the resultant

Sol.:
$\boldsymbol{\Sigma} \mathbf{F}_{\mathbf{x}}=\mathrm{o}$ (the resultant is vertical)
$\boldsymbol{\Sigma} \mathbf{F}_{\mathbf{X}}=100 \cos \alpha+150 \cos (30+\alpha)-200 \cos \alpha=0$

$=100 \cos \alpha+150(\cos 30 \cdot \cos \alpha-\sin 30 \cdot \sin \alpha)-200 \cos \alpha=0$
$=100 \cos \alpha+150 \cos 30 \cdot \cos \alpha-150 \sin 30 \cdot \sin \alpha-200 \cos \alpha=0]$ divided by $\cos \alpha$
$=100+150 \cos 30-150 \sin 30 \cdot \frac{\sin \alpha}{\cos \alpha}-200=0$
$=100+150 \cos 30-150 \sin 30 \cdot \tan \alpha-200=0$
$=100+150 \cos 30-200=150 \sin 30 \cdot \tan \alpha$
$\tan \alpha=\frac{100+150 \cos 30-200}{150 \sin 30}=0.3987$
$\alpha=\tan ^{-1} 0.3987=21.74^{\circ}$
The resultant, $\mathrm{R}=\Sigma \mathrm{F}_{\mathrm{Y}} \quad$ [the resultant is vertical]
$\mathrm{R}=-200 \sin \alpha-150 \sin (30+\alpha)-100 \sin \alpha$
$=-200 \sin 21.74-150 \sin (30+21.74)-100 \sin 21.74$
$=-200 \sin 21.74-150 \sin 51.74-100 \sin 21.74$
$R=-228.89 \mathrm{~N}$

Example 3: If the magnitude of the resultant force acting on the eyebolt is 600 N and its direction measured clockwise from the positive x -axis is $\boldsymbol{\theta}=30^{\circ}$ determine the magnitude of F1 and the angle ϕ ?

Sol.:
$\mathrm{R}_{\mathrm{X}}=\Sigma \mathrm{F}_{\mathrm{X}}$
$600 \cos 30^{\circ}=\mathrm{F} 1 \cos \phi+500 \sin 30^{\circ}-450 \cdot \frac{3}{5}$
$F 1 \cos \phi=539.62 \mathrm{~N}$

$R_{Y}=\Sigma F_{Y}$
$-600 \sin 30^{\circ}=\mathrm{F} 1 \sin \boldsymbol{\phi}-500 \cos 30^{\circ}-450 \cdot \frac{4}{5}$
$\mathrm{F} 1 \sin \boldsymbol{\phi}=493.01 \mathrm{~N}$

Divided (2) / (1)

$$
\begin{aligned}
& \frac{F 1 \sin \boldsymbol{\varphi}}{F 1 \cos \boldsymbol{\varphi}}=\frac{493.01}{539.62} \\
& \tan \boldsymbol{\phi}=0.91
\end{aligned}
$$

$\phi=\tan -10.91=42.3^{\circ} \quad$ sub. In (1)
F1 $\cos 42.3^{\circ}=539.62 \mathrm{~N}$
$\mathrm{F} 1=729.57 \mathrm{~N}$

