

Engineering Mechanic

Centroid and Center of Gravity:

The centroid is a point which defines the geometric center of an object. The lines,

areas, and volumes all have centroids. We will study the centroids of plane, curve ,areas ,volume and composite bodies.

Centroid of a line in a plane:

The centroid C represents the center of a homogenous wire of length L and is specified by the distances $\overline{x} \& \overline{y}$, where:

 $\overline{\mathbf{x}}$: horizontal distance from the centroid to the y-axis,

 $\bar{\mathbf{y}}$: vertical distance from the centroid to the x-axis.

If the length L is subdivided into differential elements dl, then the moments of these elements about an axis is equal to the moment of total length about the same axis

L.
$$\overline{\mathbf{x}} = \mathbf{\xi} \ \mathbf{x}$$
.dl
 $\overline{\mathbf{x}} = \mathbf{\xi} \ \mathbf{x}$.L/L
L. $\overline{\mathbf{y}} = \mathbf{\xi} \ \mathbf{y}$.dl
 $\overline{\mathbf{y}} = \mathbf{\xi} \ \mathbf{y}$.dl/L

In integral form :
$$\overline{\mathbf{x}} = \frac{\int \mathbf{x} \cdot \mathbf{dl}}{L}$$
, $\overline{\mathbf{y}} = \frac{\int \mathbf{\tilde{y}} \cdot \mathbf{dl}}{L}$

Engineering Mechanic Assist. Lec.Elaf Jasim

Shape		x	Ţ	Area
Triangular area	$\frac{1}{ \frac{1}{2} +\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+\frac{b}{2}}$		$\frac{h}{3}$	$\frac{bh}{2}$
Quarter-circular area	c, c,	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area	$\begin{array}{c} 0 \\ \hline \hline x \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 1 \\ \hline y \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter-elliptical area		$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Semielliptical area	$\begin{array}{c c} O & \downarrow y \\ \hline & \downarrow y \\ \hline & \downarrow x \\ \hline & & O \\ \hline & a \\ \hline & & \downarrow \end{array}$	0	$\frac{4b}{3\pi}$	$\frac{\pi ab}{2}$

E	ngineering Mechanic Ass	sist. Lec.Elat Ja	sim	COLUMN
Semiparabolic area		$\frac{3a}{8}$	$\frac{3h}{5}$	$\frac{2ah}{3}$
Parabolic area	$\begin{array}{c} c \\ 0 \\ \hline \hline \hline y \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} h \\ \downarrow \\ \hline \end{array} \\ \hline \begin{array}{c} h \\ \downarrow \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \\$	0	$\frac{3h}{5}$	$\frac{4ah}{3}$
Parabolic spandrel	$O \overbrace{x \longrightarrow x}^{a} \overbrace{x}^{a} $	$\frac{3a}{4}$	$\frac{3h}{10}$	<u>ah</u> 3
General spandrel	$O \underbrace{\begin{array}{c} & a \\ & y = kx^n \\ & & & & \\ & & & \\ & & $	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$
Circular sector		$\frac{2r\sin\alpha}{3\alpha}$	0	ar ²

Shape		x	Ţ	Length
Quarter-circular arc	C	$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc	$O\left \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0	$\frac{2r}{\pi}$	πr
Arc of circle		$\frac{r \sin \alpha}{\alpha}$	0	2ar

Engineering Mechanic

Assist. Lec.Elaf Jasim

<u>Centroid of a Volume:</u>

$$\bar{x} = \frac{\int_{V} \tilde{x} \, dV}{\int_{V} dV} \qquad \bar{y} = \frac{\int_{V} \tilde{y} \, dV}{\int_{V} dV} \qquad \bar{z} = \frac{\int_{V} \tilde{z} \, dV}{\int_{V} dV}$$

Centroid of composite areas:

The centroid of composite areas can be found using the relations :

Where:

x,**y**: centroids of each composite part of the area.

ξA: sum of the areas of all parts (total areas).

 $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$: centroids of the total area.

EXAMPLE(1): Locate the centroid of the plate area shown in figure below:

Segment	A (ft ²)	\widetilde{x} (ft)	\widetilde{y} (ft)	$\widetilde{x}A$ (ft ³)	$\widetilde{y}A$ (ft ³)
1	$\frac{1}{2}(3)(3) = 4.5$	1	1	4.5	4.5
2	(3)(3) = 9	-1.5	1.5	-13.5	13.5
3	-(2)(1) = -2	-2.5	2	5	-4
	$\Sigma A = 11.5$			$\Sigma \widetilde{x} A = -4$	$\Sigma \tilde{y}A = 14$

Thus,

$$\overline{x} = \frac{\Sigma \widetilde{x}A}{\Sigma A} = \frac{-4}{11.5} = -0.348 \text{ ft} \qquad Ans.$$
$$\overline{y} = \frac{\Sigma \widetilde{y}A}{\Sigma A} = \frac{14}{11.5} = 1.22 \text{ ft} \qquad Ans.$$

Engineering Mechanic

Assist. Lec.Elaf Jasim

Ex.2: Using the method of composite areas, determine the location of the centroid of the shaded area shown in figure below.

$$\bar{x} = \frac{\Sigma A \bar{x}}{\Sigma A} = \frac{+25.23 \times 10^6}{+378.6 \times 10^3} = 66.6 \text{ mm}$$
$$\bar{y} = \frac{\Sigma A \bar{y}}{\Sigma A} = \frac{+116.77 \times 10^6}{+378.6 \times 10^3} = 308 \text{ mm}$$

$$\bar{x} = \frac{2 x A}{\Sigma A}$$

= 757.7×10³/13.828×10³ = 54.8 mm
$$\bar{y} = \frac{\Sigma \bar{y} A}{\Sigma A}$$

 $=506.2 \times 10^{3} / 13.828 \times 10^{3} = 36.6 \text{ mm}$