Centroid and Center of Gravity:

The centroid is a point which defines the geometric center of an object. The lines, areas, and volumes all have centroids. We will study the centroids of plane, curve , areas ,volume and composite bodies.

Centroid of a line in a plane:

The centroid C represents the center of a homogenous wire of length L and is specified by the distances $\bar{x} \& \bar{y}$, where:
$\overline{\mathbf{x}}$: horizontal distance from the centroid to the y -axis,
$\overline{\mathbf{y}}$: vertical distance from the centroid to the x -axis.
If the length L is subdivided into differential elements dl , then the moments of these elements about an axis is equal to the moment of total length about the same axis
L. $\overline{\mathrm{x}}=\Sigma \overline{\mathrm{x}} . \mathrm{dl}$

$$
\overline{\mathbf{x}}=\boldsymbol{\mathcal { C }} \mathbf{x} . \mathrm{dl} / \mathrm{L}
$$

L. $\overline{\mathrm{y}}=\Sigma \mathrm{y} . \mathrm{dl}$
$\overline{\mathbf{y}}=\boldsymbol{\mathcal { E }} \mathbf{y} . \mathrm{dl} / \mathrm{L}$

In integral form $: \bar{x}=\frac{\int x . d l}{L}, \bar{y}=\frac{\int \tilde{y} . \mathrm{dl}}{L}$

Rectangle	Area and Centroid

Shape		\bar{x}	\bar{y}	Area
Triangular area			$\frac{h}{3}$	$\frac{b h}{2}$
Quarter-circular area		$\frac{4 r}{3 \pi}$	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{4}$
Semicircular area		0	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area		$\frac{4 a}{3 \pi}$	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{4}$
Semielliptical area		0	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{2}$

Engineering Mechanic
Assist. Lec.Elaf Jasim

Semiparabolic area		$\frac{3 a}{8}$	$\frac{3 h}{5}$	$\frac{2 a h}{3}$
Parabolic area		0	$\frac{3 h}{5}$	$\frac{4 a h}{3}$
Parabolic spandrel		$\frac{3 a}{4}$	$\frac{3 h}{10}$	$\frac{u h}{3}$
General spandrel		$\frac{n+1}{n+2} a$	$\frac{n+1}{4 n+2} h$	$\frac{a h}{n+1}$
Circular sector		$\frac{2 r \sin \alpha}{3 \alpha}$	0	αr^{2}

Shape		\bar{x}	\bar{y}	Length
Quarter-circular are		$\frac{2 r}{\pi}$	$\frac{2 r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc		$\frac{r}{\pi}$		
Arc of circle			0	$\frac{2 r}{\pi}$

Centroid of a Volume:

Centroid of composite areas:

The centroid of composite areas can be found using the relations :

Where:
\mathbf{x}, \mathbf{y} : centroids of each composite part of the area.
$\boldsymbol{\Sigma} \mathbf{A}$: sum of the areas of all parts (total areas).
$\overline{\mathbf{x}}, \overline{\mathbf{y}}$: centroids of the total area.
EXAMPLE(1): Locate the centroid of the plate area shown in figure below:

Engineering Mechanic
Assist. Lec.Elaf Jasim

Sol:

Segment	$A\left(\mathrm{ft}^{2}\right)$	\tilde{x} (ft)	\tilde{y} (ft)	$\widetilde{x} A\left(\mathrm{ft}^{3}\right)$	$\tilde{y} A\left(\mathrm{ft}^{3}\right)$
1	$\frac{1}{2}(3)(3)=4.5$	1	1	4.5	4.5
2	$(3)(3)=9$	-1.5	1.5	-13.5	13.5
3	-(2)(1) $=-2$	-2.5	2	5	-4
	$\Sigma A=11.5$			$\overline{\sum \tilde{x} A=-4}$	$\sum \tilde{y} A=14$

Thus,

$$
\begin{aligned}
& \bar{x}=\frac{\sum \tilde{x} A}{\sum A}=\frac{-4}{11.5}=-0.348 \mathrm{ft} \\
& \bar{y}=\frac{\sum \tilde{y} A}{\Sigma A}=\frac{14}{11.5}=1.22 \mathrm{ft}
\end{aligned}
$$

Ex.2: Using the method of composite areas, determine the location of the centroid of the shaded area shown in figure below.

Dimensions in mm

Arca $=(700)(800)=560 \times 10^{3} \mathrm{~mm}^{2} \oplus$

Shape	Area A $\left(\mathbf{m m}^{2}\right)$	$\overline{\boldsymbol{x}}$ $(\mathbf{m m})$	$A \bar{x}$ $\left(\mathbf{m m}^{3}\right)$	\bar{y} $(\mathbf{m m})$	$A \bar{y}$ $\left(\mathbf{m m}^{3}\right)$
1 (Rectangle)	$+560.0 \times 10^{3}$	0	0	+350	196.0×10^{6}
2 (Semicircle)	-141.4×10^{3}	-272.7	$+38.56 \times 10^{6}$	+400	-56.56×10^{6}
3 (Triangle)	-40.0×10^{3}	+333.3	-13.33×10^{6}	+566.7	-22.67×10^{6}
$\boldsymbol{\Sigma}$	$+378.6 \times 10^{3}$	\cdots	$+25.23 \times 10^{6}$	\cdots	$+116.77 \times 10^{6}$

$$
\begin{aligned}
& \bar{x}=\frac{\Sigma A \bar{x}}{\Sigma A}=\frac{+25.23 \times 10^{6}}{+378.6 \times 10^{3}}=66.6 \mathrm{~mm} \\
& \bar{y}=\frac{\Sigma A \bar{y}}{\Sigma A}=\frac{+116.77 \times 10^{6}}{+378.6 \times 10^{3}}=308 \mathrm{~mm}
\end{aligned}
$$

Engineering Mechanic
Example (3): For the plane area shown in Figure below find the location of the centroid.

$\bar{x}=\frac{\Sigma \tilde{x} A}{\Sigma A}$
$=757.7 \times 10^{3} / 13.828 \times 10^{3}=54.8 \mathrm{~mm}$
$\bar{y}=\frac{\Sigma \tilde{y} A}{\Sigma A}$
$=506.2 \times 10^{3} / 13.828 \times 10^{3}=36.6 \mathrm{~mm}$

