Ex/A $0.2011 g m$ sample of an organic compound was burned in a stream of oxygen , and CO_{2} produced in a solution of barium hydroxide.

Calculate the percentage of carbon in the sample if 0.500 gm at $\mathrm{BaCo3}$ was formed .

$$
\mathrm{Co}_{2}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaCo}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Solution/

$$
1 \mathrm{~mol}_{\mathrm{BaCo}}^{3} \text { } \equiv 197.0 \mathrm{gm}
$$

$\mathrm{No} . \mathrm{mol}_{\mathrm{BaCo}}^{3} 3=0.500 \mathrm{gm} \mathrm{BaCo}_{3} \times \frac{1 \mathrm{~mol} \mathrm{BaCo3}}{197 \mathrm{gm} \mathrm{BaCo} 3} \quad=2.538 \times 10^{-3}$ mol BaCo_{3}
$1 \mathrm{~mol} \mathrm{BaCo}_{3} \equiv 1 \mathrm{~mol} \mathrm{Co}_{2}=2.538 \times 10^{-3} \mathrm{~mol}$
$1 \mathrm{~mol} \mathrm{Co}_{2} \equiv 44.0 \mathrm{gm}$
Mass $\mathrm{Co}_{2}=2.538 \times 10^{-3} \mathrm{~mol}_{z} \times \frac{44.0 \mathrm{gm}}{1 \mathrm{~mol} \mathrm{coz}}$
$=0.1116 \mathrm{gm} \mathrm{Co}_{2}$
$\mathrm{M} \mathrm{Co}_{2} \%=\frac{m \mathrm{CO} 2}{m \operatorname{comp}} \times 100$
$\%=\frac{0.1116}{0.2011} \times 100=55.49 \%$
Ex/A 0.3516 gm sample of a commercial phosphate detergent was ignited at a red heat to destroy the organic matter . the residue was then taken up in hot HCl , which converted the P to $\mathrm{H}_{3} \mathrm{po}_{4}$. The phosphate was precipitated as $\mathrm{MgNH}_{4} \mathrm{Po}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ by addition of Mg^{+2} followed by aqueous NH_{3}. after being filtered and washed. The precipitate was converted to $\mathrm{Mg}_{2} \mathrm{p}_{2} \mathrm{O}_{7}\left(222.57 \mathrm{gm}\right.$ mol) by ignition at $1000 \mathrm{C}^{0}$ this residue weighed 0.2161 gm .Calculate the percent $\mathrm{P}(30.974 \mathrm{gm} \mathrm{mol})$ in the sample.

Solution/
No $. \operatorname{mol~MP}=0.2161 \mathrm{gm} \mathrm{MP} \times \frac{1 \mathrm{~mol} \mathrm{MP}}{222.57 \mathrm{gm} \mathrm{MP}}=19.418 \times 10^{-4} \mathrm{~mol} \mathrm{P}$
$1 \mathrm{~mol} \mathrm{MP} \equiv 2 \mathrm{~mol} \mathrm{P}$
No. $\mathrm{mol} P=30.774 \mathrm{gm}$
Mass $P=19.418 \times 10^{-4} \mathrm{~mol} \times \frac{30.974 \mathrm{gm}}{\mathrm{mol}}=0.06015 \mathrm{gm} \mathrm{P}$
Percent $P \%=\frac{0.06015}{0.3516} \times 100=17.107=17.11 \%$
$\mathrm{Ex} / \mathrm{A} 0.7151 \mathrm{gm}$ sample of impure $\mathrm{Al}_{2}\left(\mathrm{Co}_{3}\right)_{3}$ decomposed with HCl . The liberated CO_{2} was collected on calcium oxide and found to weight 0.0621 gm the percentage of (Al) in the sample ?

Solution/

$$
1 \mathrm{~mol} \mathrm{Co}_{2} \approx 44.0 \mathrm{gm}
$$

No $. \mathrm{mol} \mathrm{Co}_{2}=0.0621 \mathrm{gmCo}_{z} \times \frac{1 \mathrm{~mol} \mathrm{CO} 2}{44.0 \mathrm{gm} \mathrm{COZ}}=1.411 \times 10^{-3} \mathrm{~mol}$
$1 \mathrm{~mol} \mathrm{Al} 2\left(\mathrm{Co}_{3}\right)_{3} \equiv 3 \mathrm{~mol}\left(\mathrm{Co}_{2}\right)$
$1 \mathrm{~mol} \mathrm{Al} 2\left(\mathrm{Co}_{3}\right)_{3} \equiv 2 \mathrm{~mol}(\mathrm{Al})$
No. $\mathrm{mol} \mathrm{Al}=1.411 \times 10^{-3} \mathrm{~mol}_{\mathrm{Z}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{cOz}}=0.941 \times 10^{-3} \mathrm{~mol} \mathrm{Al}$
Mass . $\mathrm{Al}=0.041 \times 10^{-3} \mathrm{~mol} \times \frac{234 \mathrm{gm}}{1 \mathrm{~mol}}=0.22 \mathrm{gm} \mathrm{Al}$
$\% \mathrm{Al}=\frac{0.22 \mathrm{gm}}{0.7151 \mathrm{gm}} \times 100=30.76 \%$
Ex / the mercury in a 0.8142 gm sample was precipitated with an excess of paraper iodic acid $\mathrm{H}_{2} \mathrm{IO}_{6}$

$$
5 \mathrm{Hg}^{+2}+2 \mathrm{H}_{5} \mathrm{IO}_{6} \rightarrow \mathrm{Hg}_{5}\left(\mathrm{IO}_{6}\right)_{2}+10 \mathrm{H}^{+}
$$

The precipitate was filtered free of precipitating agent, dried and weighed 0.4114 gm was recovered. Calculate the percentage of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ in the sample.

Solution /

$$
1 \mathrm{~mol} \mathrm{Hg}_{5}\left(\mathrm{IO}_{6}\right)_{2} \equiv 1451.0 \mathrm{gm}
$$

No.mol $\mathrm{Hg}_{5}\left(\mathrm{IO}_{6}\right)_{2}=0.4114 \mathrm{gm} \mathrm{Hg}_{5}\left(\mathrm{IO}_{6}\right)_{2} \times \frac{1 \mathrm{~mol} \mathrm{Hg} 5(\mathrm{IO} 6) 2}{1451 \mathrm{gm} \mathrm{Hg} 5(\mathrm{IO} 6) 2}$

$$
=2.84 \times 10^{-4} \mathrm{~mol}
$$

$2 \mathrm{~mol} \mathrm{Hg} 5\left(\mathrm{IO}_{6}\right)_{2} \equiv 5 \mathrm{~mol} \mathrm{Hg} 2 \mathrm{Cl}_{2}$
No.mol Hg $\mathrm{Cl}_{2}=2.84 \times 10^{-4} \mathrm{~mol}_{5}\left(\mathrm{H}_{6}\right)_{z} \times \frac{5 \mathrm{molHg} 2 \mathrm{Cl} 2}{2 \mathrm{molHg} 5(\mathrm{IO} 6) 2}$

$$
=7.10 \times 10^{-4} \mathrm{~mol}
$$

$1 \mathrm{~mol} \mathrm{Hg} 2_{2} \mathrm{Cl}_{2} \equiv 473.0 \mathrm{gm}$
Mass of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}=7.10 \times 10^{-4} \mathrm{~mol} \times 473.0 \mathrm{gm} / \mathrm{mol}=0.3358 \mathrm{gm}$
$\% \mathrm{Hg}_{2} \mathrm{Cl}_{2}=\frac{0.3358 \mathrm{gm}}{0.8142 \mathrm{gm}} \times 100=41.24 \%$
Ex / treatment of a 0.2500 gm sample of impure potassium chloride with an excess of AgNO_{3} resulted in the formation of 0.2191 gm of AgCl .

Calculate the percentage of KCl in the sample.
Solution /
$\mathrm{KCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{KNO}_{3}$
$1 \mathrm{~mol} \mathrm{KCl} \equiv 1 \mathrm{~mol} \mathrm{AgCl}$
$1 \mathrm{~mol} \mathrm{AgCl} \equiv 143.5 \mathrm{gm}$
No.mol AgCl $=0.2191 \mathrm{gm} \mathrm{AgCl} \times 1 \mathrm{~mol} \mathrm{AgCl} / 143.5 \mathrm{gm} \mathrm{AgCl}$

$$
=1.53 \times 10^{-3} \mathrm{~mol} \mathrm{AgCl}
$$

Stoichiometric factor $=1 \mathrm{~mol} \mathrm{KCl} / 1 \mathrm{~mol} \mathrm{AgCl}$

No. $\mathrm{mol} \mathrm{KCl}=1.53 \times 10^{-3} \mathrm{~mol} \mathrm{AgCl} \times \frac{1 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{AgCl}}=1.53 \times 10^{-3} \mathrm{~mol} \mathrm{KCl}$
$1 \mathrm{~mol} \mathrm{KCl} \equiv 74.5 \mathrm{gm} \mathrm{KCl}$
Mass KCl $=1.53 \times 10^{-3}$ molkcl $\times 74.5 \mathrm{gm} / \mathrm{mol} \mathrm{KCl}=0.114 \mathrm{gm} \mathrm{KCl}$
$\% \mathrm{KCl}=0.114 \mathrm{gm} / 0.2500 \mathrm{gm} \times 100=45.6 \%$
Ex/ A sample of impure magnetite , $\mathrm{Fe}_{3} \mathrm{O}_{4}$, weighing 1.542 gm is dissolved ; the iron is oxidized to Fe^{+}and precipitated as $\mathrm{Fe}(\mathrm{OH})_{3}$. The precipitate is ignited to $\mathrm{Fe}_{2} \mathrm{O}_{3}$, giving a weighet of 1.485 gm .Calculate the percentage of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in the sample .

$$
\begin{aligned}
\text { No. mol } \mathrm{Fe}_{2} \mathrm{O}_{3} & =1.485 \mathrm{~mol} \mathrm{gm} \mathrm{Fe}_{2} \theta_{3} \times \frac{m o l \mathrm{Fe} 2 \mathrm{O} 3}{159.7 \mathrm{gm} \mathrm{Fe} 2 \mathrm{O} 3} \\
& =0.00930 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
\end{aligned}
$$

This is equivalent to $2 / 3$ as many moles of $\mathrm{Fe}_{3} \mathrm{O}_{4}$, since 2 moles $\mathrm{Fe}_{3} \mathrm{O}_{4}$ will yield 3 moles $\mathrm{Fe}_{2} \mathrm{O}_{3}$ when oxidized.

$$
2 \text { moles } \mathrm{Fe}_{34} \equiv 3 \text { moles } \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

$\mathrm{No}. \mathrm{molFe}_{3} \mathrm{O}_{4}=0.00930$ moleFe $_{2} \mathrm{O}_{3} \times \frac{2 \text { mole } \mathrm{Fe} 3 \mathrm{O} 4}{3 \mathrm{moleFe} 2 \mathrm{O} 3}=0.00620$ moles $\mathrm{Fe}_{3} \mathrm{O}_{4}$
Weight $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in sample $=0.00620$ mole $\times 231.55 \mathrm{gm} /$ mole

$$
=1.437 \mathrm{gm} \mathrm{Fe}_{3} \mathrm{O}_{4}
$$

Percentage $\mathrm{Fe}_{3} \mathrm{O}_{4}=1.437 \mathrm{gm} / 1.542 \mathrm{gm} \times 100=93.1 \%$

Calculations involving concentrations of solutions

1- Physical methods :- the simplest ways of expressing the strength of a solution are in terms of the amount of solute present per unit amount of solvent or solution. Such methods are known as physical methods because they are based only on physical measurements of weight or volume and do not take into account the chemical reactions of the solute.

The more widely used physical methods are :
1- Grams solute per liter (or 1000 ml) solution gm/L(solution) gm/1000ml(solution).

2- Grams solute per liter (or 1000 ml) solvent. gm/L(solvent) gm/1000ml (solution).

3- Grams solute per unit weight of solution gm/gm (solution)
4- Grams solute per unit weight of solvent gm/gm(solvent)
1- Percentage methods.
Weight percent $(w / w)=\frac{\text { mass solute }}{\text { mass solution }} \times 100 \%$
Volume percent $(\mathrm{v} / \mathrm{v})=\frac{\text { volume solute }}{\text { volume solution }} \times 100 \%$
Weight / volume percent $(\mathrm{w} / \mathrm{v})=\frac{\text { mass solute }, g}{\text { volume solution, } m l} \times 100 \%$

Ex/Express the concentration with weight percent of the solution weighting 200.0 gm and contained in 25.0 gm of sodium sulphate $\mathrm{Na}_{2} \mathrm{So}_{4}$. Solution/

$$
\begin{aligned}
\%(\mathrm{w} / \mathrm{w}) & =\frac{\text { weight of solute }}{\text { weight of solution }} \times 100 \\
& =\frac{25.0 \mathrm{gm} \text { solute }}{200.0 \mathrm{gm} \text { solution }} \times 100=12.5 \%
\end{aligned}
$$

Ex/Use the weight percent, calculate the concentration of the solution when $3 \mathrm{gm} \mathrm{AgNo}_{3}$ dissolve in 1L distilled water ?

Solution/1L $\mathrm{H}_{2} \mathrm{O} \rightarrow$ weight $\mathrm{H}_{2} \mathrm{O}$
Density $=\frac{\text { weight }}{\text { volume }}$
Weight $\left(\mathrm{H}_{2} \mathrm{O}\right)=$ density \times volume

$$
=\frac{1 \mathrm{gm}}{\mathrm{~cm} 3} \times 1 \mathrm{~L} \times \frac{1000 \mathrm{~cm} 3}{L}
$$

Weight = weight + weight
(solution) (solute) (solvent)

$$
\begin{aligned}
&=3 \mathrm{gm}+1000 \mathrm{gm}=1003 \mathrm{gm} \\
&(\mathrm{w} / \mathrm{w}) \%=\frac{3 \mathrm{gm}}{1003 \mathrm{gm}} \times 100=0.299 \% \rightarrow 0.3 \%
\end{aligned}
$$

Ex/Use the volume percent, calculate the concentration of the solution is prepared by addition 50.0 ml methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ to 200.0 ml water?
Solution/
Volume(solution) $=50.0 \mathrm{ml}+200.0 \mathrm{ml}=250.0 \mathrm{ml}$
$\mathrm{V} / \mathrm{V} \%=\frac{50 \mathrm{ml}}{250 \mathrm{ml}} \times 100=20.0 \%$

