Basic electrical engineering lap

Exp. 2

Series and parallel Resistor's Connection

Objective:

To study the properties of series and parallel connection.
Tools needed:-

1. DC voltage supply.
2. Set of wires.
3. Resistances.
4. Multi-meter.

Theory :

1. The Series Circuit

A SERIES CIRCUIT or "series-connected circuit" is a circuit having JUST ONE CURRENT PATH. Thus, Fig.(1) is an example of a "series circuit" in which a battery of constant potential difference V volts, and three resistances, are all connected "in series".

Fig.(1)

Since a series circuit has just one current path, it follows that all the components in a series circuit CARRY THE SAME CURRENT I, a fact evident from inspection of Fig.(1).

The current I is assumed to be a flow of positive charge, and thus flows out of the positive terminal of the battery and around through the external circuit, re-entering the battery at the negative terminal. This is indicated by the arrows in Fig.(1).

In a series circuit, the TOTAL resistance, RT, that the battery sees is equal to the SUM of the individual resistances. Thus, in the particular case of Fig.(1) the battery sees a total resistance, RT = R1 + R2 + R3, while in the general case of " n " resistances connected in series the battery sees a total resistance of :

$$
R T=R 1+R 2+R 3+\ldots . R n
$$

By Ohm's law, it follows that the current I in a series circuit is equal to

$$
I=\frac{V}{R_{\mathrm{T}}}=\frac{V}{R_{1}+R_{2}+\cdots+R_{n}}
$$

Resistance, on the other hand, consumes electrical energy, removing it from the circuit in the form of heat. Since resistance does not produce or generate electrical energy, it is a non-active or PASSIVE type of circuit element.

The potential difference between the terminals of a resistor is called the VOLTAGE DROP across the resistor, and, is equal to the current I times the resistance R; that is, the "voltage drop" across a resistance of R ohms carrying a current of I amperes is $I^{*} R$ volts.

$$
\begin{aligned}
& V=I R_{\mathbf{T}} \\
& V=I\left(R_{1}+R_{2}+\cdots+R_{n}\right) \\
& V=I R_{1}+I R_{2}+\cdots+I R_{n}
\end{aligned}
$$

We have the important fact that:
In a series circuit, the applied voltage is equal to the sum of the

It should be pointed out that the voltage drop across a resistor is always from plus to minus in the direction of the current flow, a fact illustrated in Fig.(2).

Fig.(2)

2. The Parallel Circuit

A PARALLEL circuit is one in which the battery current divides into a number of "parallel paths." This is shown in Fig.(3), in which a battery, of constant V volts, delivers a current of I amperes to a load consisting of any number of n resistances connected "in parallel."

Fig.(3)

The currents in the individual resistances are called the "branch currents," and the battery current I is often called the "line current." From inspection of Fig.(3) we see that, in a parallel circuit, the battery current I is equal to the sum of the branch currents.

$$
I=I_{1}+I_{2}+I_{3}+\cdots+I_{n}
$$

If the battery voltage V is applied equally to all n resistances; that is, the same voltage V is applied to all the parallel branches. Hence, by Ohm's law, the individual branch currents in Fig.(3) have the values:

$$
I_{1}=V / R_{1}, \quad I_{2}=V / R_{2}, \ldots, I_{n}=V / R_{n}
$$

Then, we have:

Now let RT be the total resistance as seen by the battery in Fig.(3).

Then, by Ohm's law, it has to be true that:

$$
I=\frac{V}{R_{\mathrm{T}}}
$$

Since the left-hand sides of the last two equations are equal, the two right-hand sides are also equal. Setting the two right-hand sides equal, then canceling the Vs, gives :

$$
\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots+\frac{1}{R_{n}}
$$

1. Using the DC circuit trainer, connect the circuit Shown in Fig. (4), take VT $=10 \mathrm{~V}$, and $R 1=1 \mathrm{k} \Omega, R 2=100 \Omega$ and $R 3=2 \mathrm{k} \Omega$.
2. Measured the voltage and current of "R1, R2 \& R3", then record it in table below :

	$1 \mathrm{k} \Omega$	100Ω	$2 \mathrm{k} \Omega$	
$V($ volt $)$			$\mathbf{V}_{\mathbf{T}}=$	
$\mathrm{I}(\mathrm{mA})$		$\mathbf{I}_{\mathbf{T}}=$		

3. By using ohm's law, Calculate the RT .
4. Disconnect the DC power supply, and then measured the equivalent resistance by using the Multi-meter only.

Fig. (4)
5. Repeat the procedure in steps ($1,2,3 \& 4$) above, for the circuit shown in Fig.(5).

Discussion

1.Find the value of the current I_{1} in the circuit bellow

2. from the circuit in the following figure find the value of the current and voltage in each resistance

