

Medical Chemistry lab

First Stage

Lab Two (Preparation of Standard Solutions from Solid Materials)

م.م هدبر جاسم عبد /لحسنين
بنبين عامر كاظـ
نور الهـّى حسبن

Medical Chemistry lab

the purpose of this experiment:
is Know Preparation of Standard Solutions from Solid Materials in different concentrations.

Tools and Matrials :

\checkmark Funnel
\checkmark Stirrer
\checkmark Beaker
\checkmark Spatula
\checkmark Watch glass
\checkmark Volumetric Flask
\checkmark Washing bottle
\checkmark Balance.
\checkmark D.water
$\checkmark \mathrm{Na}_{2} \mathrm{CO}_{3}$

Theoryl\}

Define standard solution , types of solutions (There are two types of standard solution: primary and secondary standard Solution) Properties of standard solutions, equations, How to prepare standard solutions give exam .

$$
\begin{aligned}
& W t=\frac{\mathbf{N} * \text { Eq. } \mathbf{w t} * \mathbf{V m l}}{\mathbf{1 0 0 0}} \\
& M=\frac{\mathbf{W t} * \mathbf{1 0 0 0}}{\mathrm{M} \cdot \mathbf{W t} * \mathbf{V m l}}
\end{aligned}
$$

Prepare a solution of Sodium carbonate, $\mathbf{N a}_{2} \mathbf{C O}_{3}$ (16N)in 0.25 L of water.

Procedure:

1. the solid substance $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ has been Weighted in a watch glass.
2. (gm)of solvent $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ have been added to the beaker and stirred the solution until the solid substance is dissolved.
3. the solution have been added to the volumetric flask.
4. A funnel has been Put into the slim neck of the volumetric flask.
5. the additional of solvent has been Completed to required volume (add solvent until the liquid level reaches the calibration mark).
6. Capped the volumetric flask and inverted until the contents are thoroughly mixed.

Discussion:

-The preparing a standard solution must be accurate when using of balance because the increasing or decreasing of materials result wrong concentration and so for liquids materials when using increasing or decreasing of volume of solution.

Q
Prapare asolution of $\mathrm{Na}(\mathbf{O H}) \mathbf{0 . 2 \mathrm { M }}$ in 100 ml of water ?

$\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16$

