Al-Mustaqbal University College Department of Pharmacy General Toxicology 4th stage Lecture: 6

QASSIM A ZIGAM

✓ Gross examination of a sagittal section of the kidney reveals three clearly demarcated anatomic areas:

- **1.** Cortex
- 2. Medulla
- 3. Papilla

✓ The cortex constitutes the major portion of the kidney and receives a disproportionately higher percentage (90%) of blood flow compared to the medulla (about 6% to 10%) or papilla (1% to 2%).

Schematic of the human kidney

General Toxicology 4th stage / Pharmacy Department

Al-Mustaqbal University College

Qassim A Zigam

✓ Thus, when a blood-borne toxicant is delivered to the kidney, a high percentage of the material will be delivered to the cortex and will have a greater opportunity to influence cortical rather than medullary or papillary functions.

✓ However, medullary and papillary tissues are exposed to higher luminal concentrations of toxicants for prolonged periods of time, a <u>consequence of the more concentrated</u> <u>tubular fluid and the more sluggish flow of blood and</u> <u>filtrate in these regions</u>.

✓ The functional unit of the kidney, the nephron, may be considered in three portions:

- **1.** The vascular element
- 2. The glomerulus
- **3.** The tubular element

Oassim A Zigam

✓ The functional integrity of the mammalian kidney is vital to total body homeostasis because the kidney plays a principal role in:

- **1.** The excretion of metabolic wastes
- 2. The regulation of EC fluid volume, electrolyte composition, and acid-base balance.
- **3.** Synthesis and releases hormones such as renin and erythropoietin
- 4. Metabolism of vitamin D3 to the active 1,25-dihydroxy vitamin D3 form.

✓ A toxic insult to the kidney therefore could disrupt any or all of these functions.

✓AKI is one of the most common manifestations of nephrotoxic damage.

✓AKI is a group of syndromes that comprises multiple causative factors with varied clinical manifestations ranging from a minimal elevation in serum creatinine to anuric renal failure.

✓AKI classification is based on the extent of serum creatinine increases or changes in urine output.

✓ **GFR** is equal to the total filtration rates of the functioning nephrons in the kidney.

- ✓GFR is considered the optimal way to measure kidney function and it depends on four factors:
- **1.** Adequate blood flow to the glomerulus
- 2. Adequate glomerular capillary pressure
- 3. Glomerular permeability
- 4. Low intratubular pressure.

GFR in ml/min/1.73m²

✓ Any decline in GFR is complex and may result from:

1. Prerenal factors:

✓ For example, renal VC, IV volume depletion, and insufficient CO.∖

2. Postrenal factors:

✓ Like ureteral or bladder obstruction.

3. Intrarenal factors:

✓ Like glomerulonephritis, tubular cell injury, death, and loss; renal vasculature damage; and interstitial nephritis.

General Toxicology 4th stage / Pharmacy Department

Al-Mustaqbal University College

Qassim A Zigam

Mechanisms of reduction of the GFR.

General Toxicology 4th stage / Pharmacy Department

Al-Mustaqbal University College

Qassim A Zigam

✓ If a chemical causes tubular damage directly, then tubular casts can cause tubular obstruction, increased increased pressure, and decreased GFR.

✓ The tubular damage may result in epithelial cell death/loss, leading to a back leak of glomerular filtrate and a decrease in GFR.

Casts obstruction & back leak of glomerular filtrate

✓ If a chemical causes intrarenal vascular damage with hemodynamic alterations that lead to vasoconstriction.

✓ The resulting medullary hypoxia may cause <u>tubular</u> <u>damage and/or decreases in perfusion pressure</u>, <u>glomerular hydrostatic pressure</u>, and finally GFR.

✓ If a chemical causes intrarenal inflammation, then <u>tubular and vascular damage may follow with decreases</u> in <u>GFR</u>.

Adaptation Following Toxic Insult

✓ Fortunately, the kidney has a remarkable ability to compensate for a loss of renal functional mass.

✓ Renal studies have revealed that following unilateral nephrectomy, the GFR of the remnant kidney increases by approximately 40% to 60%.

✓ This effect is associated with early compensatory increases in glomerular plasma flow rate and glomerular hydraulic pressure.

Adaptation Mechanisms

1. The cells that are nonlethally injured may <u>undergo cell</u> <u>repair and/or adaptation</u> and contribute to the <u>recovery</u> of the nephron.

2. In addition, there is a population of cells that are uninjured may undergo compensatory <u>hypertrophy</u>, <u>adaptation, and proliferation</u>.

Adaptation Mechanisms

3. Surviving tubular epithelial cells <u>replace dead and</u> <u>detached cells</u> through <u>dedifferentiation</u>, <u>proliferation</u>, <u>migration</u>, and redifferentiation.

4. Growth factors such as <u>EGF & HB-EGF</u> delivered to tubular epithelial cells may help in the proliferative response of the nephron.

Adaptation Mechanisms

The response of the nephron to a nephrotoxic insult

General Toxicology 4th stage / Pharmacy Department Al-Mustaqbal University College

Qassim A Zigam

Chronic Kidney Disease

✓ It is generally thought that progression to chronic kidney disease (CKD) and end-stage renal failure is not simply a function of a primary renal insult.

✓ It is related to secondary pathophysiologic processes triggered by the initial injury.

Qassim A Zigam

Chronic Kidney Disease

✓ Deterioration of renal function may occur with longterm exposure to a variety of chemicals (e.g., analgesics, lithium, and cyclosporine).

✓ The progression of chronic renal disease, for example, maybe a consequence of the glomerular hemodynamic response to renal injury.

Chronic Kidney Disease

✓ Following nephron loss, there are <u>adaptive increases in</u> <u>glomerular pressures and flows that increase the single-</u> <u>nephron GFR</u> of remnant viable nephrons.

✓ Although these compensatory mechanisms serve to maintain whole-kidney GFR, evidence has accumulated to suggest that, with time, these alterations are maladaptive and faster the progression of renal failure.

Incidence and Severity of Toxic Nephropathy

✓ A wide variety of <u>drugs</u>, <u>environmental chemicals</u>, <u>and</u> <u>metals</u> can cause <u>nephrotoxicity</u>.

✓ Nephrotoxicity is a recognized clinical liability of certain classes of drugs, in particular, <u>antibiotics, angiotensin-</u> <u>converting enzyme (ACE) inhibitors and angiotensin</u> <u>receptor blockers, analgesics and nonsteroidal anti-</u> <u>inflammatory drugs (NSAIDs), radiocontrast media, and</u> <u>anticancer agents.</u> **Incidence and Severity of Toxic Nephropathy**

✓ Approximately 70% of the patients presenting with drug-induced AKI were non oliguric.

✓ The pathologic findings revealed acute tubular necrosis in 60%, approximately 50% recovered completely.

✓ The consequences of AKI can be profound, as permanent renal damage may result and <u>dialysis or renal</u> <u>transplantation may be required</u>.

Incidence and Severity of Toxic Nephropathy

- ✓ CKD leading to end-stage renal failure has been associated with long-term abuse of analgesics.
- ✓The incidence of analgesic nephropathy has been reported to be as high as 20% to 25%.

✓ Other chemicals, such as <u>lithium, cyclosporine, NSAIDs</u>, <u>lead, and cadmium may produce chronic tubulointerstitial</u> <u>nephropathy with progressive loss of renal function</u>.

Susceptibility of the Kidney to Toxicity

✓ The susceptibility of the kidney to the toxic effects of chemicals can be attributed to its <u>unique physiologic and</u> <u>anatomic features</u>.

✓ As kidneys constitute only 0.5% of total body mass, they receive about 20% to 25% of the resting CO.

✓ Consequently, any drug or chemical in the systemic circulation will be delivered to these organs in <u>relatively</u> <u>high amounts</u>.

Susceptibility of the Kidney to Toxicity

✓ The processes involved in forming concentrated urine also serve to concentrate potential toxicants in the tubular <u>fluid</u>.

✓As <u>water and electrolytes</u> are <u>reabsorbed</u> from the glomerular filtrate, <u>chemicals</u> in the tubular fluid may be concentrated, thereby driving passive diffusion of toxicants into <u>tubular cells</u>.

✓ Therefore, a nontoxic concentration of a chemical in the plasma may reach toxic concentrations in the kidney.

Susceptibility of the Kidney to Toxicity

✓ Also, <u>renal transport, accumulation, and metabolism of</u> <u>xenobiotics</u> contribute significantly to the susceptibility of the kidney to toxic injury.

✓ In addition to intrarenal factors, the <u>incidence and/or</u> <u>severity of chemically induced nephrotoxicity</u> may be related to the <u>sensitivity</u> of the kidney to circulating <u>vasoactive substances</u>.

Site-Selective Injury

✓Many nephrotoxicants have their primary effects on discrete segments or regions of the nephron.

✓ For example, the proximal tubule is the primary target for most nephrotoxic <u>antibiotics</u>, <u>antineoplastics</u>, <u>halogenated hydrocarbons</u>, <u>mycotoxins</u>, and <u>heavy metals</u>,

✓ Whereas the glomerulus is the primary site for <u>immune</u> <u>complexes</u>, the loop of Henle/collecting ducts for fluoride <u>ions</u>, and the medulla/papilla for <u>chronically consumed</u> <u>analgesic mixtures</u>.

General Toxicology 4th stage / Pharmacy DepartmentAl-Mustaqbal University College

Site-Selective Injury

✓ The reasons underlying this site-selective injury are complex but can be attributed in part to site-specific differences in:

- **1. Blood flow**
- 2. Transport, and accumulation of chemicals,
- **3.** Physicochemical properties of the epithelium
- 4. Reactivity of cellular/molecular targets
- **5.** Balance of bioactivation/detoxification reactions
- **6.** Cellular energetics
- 7. Regenerative/repair mechanisms

Glomerular Injury

✓ The glomerulus is the initial site of chemical exposure within the nephron, and a number of nephrotoxicants produce structural injury to this segment.

✓ In certain instances, chemicals alter glomerular permeability to proteins by altering the size- and charge-selective functions.

✓ Both <u>puromycin aminonucleoside and doxorubicin</u> target <u>glomerular epithelial</u> cells<u>, resulting in changes in</u> <u>size and charge selectivity and proteinuria</u>.

General Toxicology 4th stage / Pharmacy DepartmentAl-Mustaqbal University College

Glomerular Injury

✓ <u>Cyclosporine, amphotericin B, and gentamicin</u> are examples of chemicals that impair glomerular ultrafiltration without significant loss of structural integrity and decrease GFR.

✓Amphotericin B decreases GFR by causing renal vasoconstriction and decreasing the glomerular capillary ultrafiltration coefficient (Kf), an effect probably mediated through the endothelial cells.

Glomerular Injury

✓ Because of its polycationic nature, the aminoglycoside gentamicin interacts with the anionic sites on the endothelial cells, decreasing Kf, and GFR.

✓ Meanwhile, cyclosporine <u>not</u> only causes renal <u>vasoconstriction</u> and <u>vascular damage</u> but also is <u>injurious</u> to the glomerular endothelial cell.

Proximal Tubular Injury

✓ The proximal tubule is the most common site of toxicantinduced renal injury.

✓ The reasons for this relate in part to the selective accumulation of xenobiotics into this segment of the nephron.

 ✓ More importantly, tubular transport of <u>organic anions</u> and cations, low-molecular-weight proteins and peptides, <u>GSH conjugates, and heavy metals</u> is localized primarily if not exclusively to the proximal tubule.

General Toxicology 4th stage / Pharmacy DepartmentAl-Mustaqbal University College

Qassim A Zigam

Proximal Tubular Injury

✓ Proximal tubular cells appear to be more susceptible to <u>ischemic injury</u> than distal tubular cells.

✓ Therefore, the proximal tubule will likely be the primary site of toxicity for chemicals that interfere with RBF, cellular energetics, and/or mitochondrial function.

✓ Chemically induced injury to the more distal tubular structures, compared to the proximal tubule, is an infrequent occurrence.

✓ Functional abnormalities at these sites manifest primarily as impaired concentrating ability and/or acidification defects.

✓ **Drugs** that have been associated with acute injury to the more distal tubular structures include amphotericin B, cisplatin, and methoxyflurane.

✓ Each of these drugs induces an ADH-resistant polyuria, suggesting that the concentrating defect occurs at the level of the medullary thick ascending limb and/or the collecting duct.

✓ However, the mechanisms mediating these drug-induced concentrating defects appear to be different.

✓ Amphotericin B is highly lipophilic and interacts with lipid sterols such as cholesterol, resulting in the formation of transmembrane channels or pores and disrupting membrane permeability.

✓ Thus, amphotericin effectively transforms the <u>tight</u> <u>distal tubular epithelium</u> into one that is <u>leaky</u> to water and ions and impairs reabsorption at these sites.

- ✓The mechanisms mediating cisplatin-induced polyuria occur in two phases:
- **1.** The first phase is **responsive to** <u>vasopressin</u> and <u>inhibitors of prostaglandin synthesis</u>.
- 2. The second phase is not responsive to <u>vasopressin</u> or <u>prostaglandin synthesis inhibitors</u> but is <u>associated with</u> <u>decreased papillary solute content</u>.

✓ Methoxyflurane nephrotoxicity is associated with the inhibitory effects of the metabolite fluoride on solute and water reabsorption.

✓ Fluoride inhibits sodium chloride reabsorption in the thick ascending limb and inhibits ADH-mediated reabsorption of water, possibly <u>due to disruption in adenylate cyclase</u>.

Papillary Injury

✓ The renal papilla is susceptible to the chronic injurious effects of abusive consumption of analgesics.

✓ The initial target is the <u>medullary interstitial cells</u>, followed by <u>degenerative changes</u> in the <u>medullary</u> <u>capillaries, loops of Henle, and collecting ducts</u>.

Papillary Injury

✓ The intrarenal gradient for prostaglandin H synthase activity has been implicated as a <u>contributing factor for</u> induced-papillary injury.

✓ This activity is highest in the medulla and least in the cortex, and the prostaglandin hydroperoxidase component metabolizes phenacetin to reactive intermediates capable of covalent binding to cellular macromolecules.

Papillary Injury

✓ Other factors may contribute to this site-selective injury, including:

- **1.** High papillary concentrations of potential toxicants
- **2.** Inhibition of vasodilatory prostaglandins
- ✓ These two factors compromise RBF to the renal medulla/papilla, resulting in tissue ischemia.

THANK YOU FOR YOUR ATTENTION