
قلية الفيز المستقبل الجاءمعة الطبيات البصريات

# Department of Optics Techniques 

## Lecture 5

M.SC. Dhay ali sabur

## Examples and tutorials.

1. Determine the image distance and image height for a 5 cm tall object placed 45.0 cm from a double convex lens having a focal length of 15.0 cm .
2. Determine the image distance and image height for a 5 cm tall object placed 30.0 cm from a double convex lens having a focal length of 15.0 cm .
3. Determine the image distance and image height for a 5 cm tall object placed 20.0 cm from a double convex lens having a focal length of 15.0 cm .
4. 8. Determine the focal length of a double concave lens that produces an image that is 16.0 cm behind the lens when the object is 28.5 cm from the lens.
1. A magnified, inverted image is located a distance of 32.0 cm from a double convex lens with a focal length of 12.0 cm . Determine the object distance and tell whether the image is real or virtual.
2. A $2.8-\mathrm{cm}$ diameter coin is placed a distance of 25.0 cm from a double concave lens that has a focal length of 12.0 cm . Determine the image distance and the diameter of the image.

## Notes

$* f$ is + if the lens is a double convex lens (converging lens)
*f is - if the lens is a double concave lens (diverging lens)
$\%$ is + if the image is a real image and located on the opposite side of the lens.
$\% v$ is - if the image is a virtual image and located on the object's side of the lens.
$* \mathrm{~h}$ is + if the image is an upright image (and therefore, also virtual)
$\% \mathrm{~h}$ is - if the image an inverted image (and therefore, also real

