

## Lecture 2

## Advanced Analysis for Pharmacy Students

By
Professor Dr. Mohie Sharaf El Din

## Electronic Spectra and molecular Structre

- Absorption of EMR in the UV-VIS. Region by absorbing groups in the molecule ( chromophores ) lead to electronic transition i.e. the electronic system of the molecule transfer from ground state to excited state


## Types of Electronic Transitions

- The outer electrons in an organic molecule may occupy one of three different energy levels :
- Sigma ( $\sigma$ ) electrons : are bonding electrons which represent valence bonds and are formed from linear overlaps of electronic clouds of S or Sp orbitals. They possess the lowest energy level , i.e. most stable.
- $\mathrm{Pi}(\pi)$ electrons : bonding electrons constituting the pi bonds (double bonds) and result from lateral overlap of electronic clouds of $P$ orbitals. They are of higher energy than sigma electrons .
- Non-bonding ( n -electrons) : these are atomic orbitals of hetero-atoms ( N, O, S, halogen ) which do not participate in bonding , they usually occupy the highest energy level .
- Types of Electronic Transitions
- $\sigma-\sigma^{*}$ transition : in vacuum uv e.g. saturated compounds (alkane)
- $\sigma$ to $\pi^{*}$ (carbonyl compounds)
- $\boldsymbol{\pi}-\boldsymbol{\pi}^{*}$ transition : in 200-700 nm region e.g. unsaturated compounds.
- (alkenes, carbonyl compounds, alkynes, azo compounds)
- $\eta$ to $\sigma$ * (oxygen, nitrogen, sulfur, and halogen compounds)
- $\underline{\mathrm{n}-\boldsymbol{\pi}^{*}}$ transition : in $\mathbf{1 5 0} \mathbf{- 2 5 0} \mathbf{~ n m}$ region (carbonyl compounds)



## Types of Electronic Transitions

$\sigma$ to $\sigma^{*}$

| Chromophore | $\lambda_{\text {max }}$ |
| :---: | :---: |
| Alkanes | $\sim 150$ |

$\pi$ to $\pi^{*}$

| Chromophore | $\lambda_{\max }$ |
| :---: | :---: |
| alkenes | $\sim \mathbf{1 7 5}$ |
| alkynes | $\sim \mathbf{1 7 0}$ |
| Carbonyls | $\sim 188$ |



- Most transitions above 200 nm are $\pi-\pi^{*}$ or $n-\pi^{*}$ e.g. in ketones $\mathrm{C}=\mathrm{O} \rightarrow \mathrm{C}^{+}-\mathrm{O}^{-} \pi-\pi^{*}$ transition

$$
C=0 \quad \rightarrow \quad C^{-}-O^{+} n-\pi^{*} \text { transition }
$$

- $\pi-\pi^{*}$ transition has greater probability than $n-\pi^{*}$, so the intensity of absorption band are greater.
e.g in $\pi-\pi^{*} \varepsilon$ 1000-100000, in $n-\pi^{*} \varepsilon$ less than 1000
- The spectrum due to chromophore is not markedly affected by minor structure change in the molecule

> e.g.

0
0

$$
\mathrm{CH} 3-\mathrm{C}-\mathrm{CH} 3 \quad \mathrm{CH} 3-\mathrm{C}-\mathrm{CH} 2-\mathrm{CH} 3
$$

Acetone
2 - butanone
Have spectra similar in shape and intensity .

- The effect of two isolated chromophores in a molecule ( not conjugated) are independent and additive.

$$
\begin{aligned}
& \text { e.g. } \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CNS} \lambda \max \text { at } 245 \mathrm{~nm} \text { with } \\
& \quad \varepsilon=800 \text { (due to }-\mathrm{CNS} \text { ) }
\end{aligned}
$$

SNC-CH $-\mathrm{CH}_{2}-\mathrm{CNS} \lambda$ max at 245 nm with $\varepsilon=2000$ (due to $2-$ CNS)

- Conjugated double or triple bonds,$\pi$ orbital overlap, that decrease energy required for excitation i.e. absorption occur at higher $\lambda$ I.e. bathochromic shift and also increase in the intensity i.e. hyperchromic effect .
- The greater the degree of conjugation the greater the shift
- Benzene : absorbs strongly at $200 \mathrm{~nm}(\varepsilon=6900)$ and with a weaker band at $230-270 \mathrm{~nm}(\varepsilon=170)$ with fine structure .
- Substitution with $-\mathrm{OH},-\mathrm{OCH}_{3},-\mathrm{NH}_{2},-\mathrm{NO},-\mathrm{CHO}$ smooth the fine structure of benzene spectrum with bathochromic shift and hyperchromism (due to $n-\pi$ conjugation .
- Polynuclear aromatic compounds (fused benzene rings) :
- e.g. naphthalene also increase conjugation
- naphthacene (4 rings ) $\lambda$ max at 470 nm and is yellow pentacene $\lambda$ max at 575 nm and is blue .
- Solvents for Spectroscopy :
- The solvent used in spectroscopy must be transparent i.e. has no absorbance during measurement in the specified region. Each solvent has its cutoff point .
- The cutoff-point of any solvent is the lowest wavelength at which the absorbance approach unity (using 1-cm cell, using water as reference) .
- Solvent-Solute interaction : going from nonpolar to polar solvent ; loss of fine structure may occur and $\lambda$ max may shift . e.g. fine structure of benzene in $n$-hexane will smoothed for spectrum of benzene in methanol.


## Choice of Solvent

| Solvent | Minimum Wavelength (nm) |
| :--- | :---: |
| acetonitrile | 190 |
| water | 191 |
| cyclohexane | 195 |
| hexane | 195 |
| methanol | 201 |
| ethanol | 204 |
| ether | 215 |
| methylene chloride | 220 |
| chloroform | 237 |
| carbon tetrachloride | 257 |

## ABSORPTION SPECTRA

- Absorption spectrum is a plot of absorption of radiation vs wavelength. According to the absorbed radiation we can classified the absorption spectra into:
1 - UV - Spectrum
2-Visible Spectrum
3-IR - Spectrum
4 - NMR -Spectrum


ETHYL ALCOHOL

## $\mathrm{C}_{2} \mathrm{H}_{6}{ }^{[\mathrm{l}}$



## Beer-Lambert Law

## Introduction

The Beer-Lambert law (also called the Beer-LambertBouguer law or simply Beer's law) is the linear relationship between absorbance and concentration of an absorber of electromagnetic radiation. The general Beer-Lambert law is usually written as:

$$
A=a_{\lambda} \times b \times c
$$

where " $A$ " is the measured absorbance, " $a$ " is a wavelength-dependent absorptivity coefficient, " $b$ " is the path length, and " $c$ " is the analyte concentration.

- When working in concentration units of molarity, the Beer-Lambert law is written as:

$$
\mathrm{A}=\varepsilon_{\lambda} \times \mathrm{b} \times \mathrm{c}
$$

where $\varepsilon_{\Lambda}$ is the wavelength-dependent molar absorptivity coefficient with units of $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$. The subscript is often dropped with the understanding that a value for is for a specific wavelength.

- If multiple species that absorb light at a given wavelength are present in a sample, the total absorbance at that wavelength is the sum due to all absorbers:

$$
\mathbf{A}=\left(\varepsilon_{1} \times \mathbf{b} \times \mathbf{c}_{1}\right)+\left(\varepsilon_{2} \times \mathbf{b} \times \mathbf{c}_{2}\right)+\ldots
$$

- where the subscripts refer to the molar absorptivity and concentration of the different absorbing species that are present.


## FUNDAMENTAL LAWS ON ABSORPTION SPECTROSCOPY

- When monochromatic radiation passes through a cuvette containing absorbing substance, the effect occurring include :
- total light entering part is absorbed part is reflected part is scattered

Io
la , part is transmitted It
Ir , part is refracted If
Is
where lo = la + It + Ir + If + Is

- For a clear solution Is = 0, Ir and If may be compensated for by means of a control cuvette containing the solvent,

$$
\text { So } \quad \text { lo }=\text { la }+ \text { It }
$$

a - Bouguert - Lambert,s Law
When abeam of a monochromatic radiation enters an absorbing medium, its intensity decreases exponentially with the increase of the thickness of the medium traversed(fig.)

$$
\begin{array}{ll}
\log \frac{l o}{l}=k b & (\text { at constant } \\
\text { concentration ) }
\end{array}
$$

( $k$ is a proportionality constant )

## b-Beer,s Law

The intensity of a monochromatic radiation decreases exponentially as the concentration of the absorbing medium increases . ( fig . )
$\log \underline{\mathrm{lo}}=\mathrm{kc} \quad($ at constant b$)$
( $k$ is a proportionality constant )
c - Beer - Lambert,s Law

$$
\begin{gathered}
\log \frac{l o}{l}=a b c \quad(\text { fig. }) \\
A=a b c
\end{gathered}
$$

where A : absorbnce
a : absorpitivity,
b : thickness cm
c : concentration g/L

- The value of " $a$ " will depend upon the method of expression of the concentration :
If C is expressed in mole/liter , then " a " is given the symbol $\varepsilon\left(1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ and is called molar absorbitivity

$$
A=\varepsilon b c
$$

When $c$ is in $g m / 100 \mathrm{ml}, b=1 \mathrm{~cm}$ we get

$$
\mathrm{A}=\mathrm{A}{ }^{1 \%}{ }_{1 \mathrm{~cm}} \mathrm{~b} \mathrm{c}
$$

$A^{1 \%}$ can be converted easily to $\boldsymbol{\varepsilon}$ by the equation
$A^{1 \%}{ }_{1 \mathrm{~cm}}=\underline{\varepsilon \times 10}$
mol.wt.

## THE RELATIONSHIP BETWEEN TRANSMITTANCE, ABSORBTION AND CONCENTRATION

- $\mathbf{T}=\underline{I}$

Io

- $\% \mathrm{~T}=\mathrm{T}$ x 100
- or $\mathrm{T}=\% \mathrm{~T}$

100

- $A=\log \underline{l o}$
- $A=-\log T$
$A=\log \underline{1}$
T

- $A=a . b . c$
- $T=10^{-a b c}$
- as $A=\underset{T}{\log 1} \quad, \quad T=\frac{\underline{\%} T}{100}$
- then $A=\log 100$

$$
\begin{aligned}
\% & \% \mathrm{~T} \\
\mathrm{~A} & =\log 100-\log \% \mathrm{~T} \\
& =2-\log \% \mathrm{~T}
\end{aligned}
$$

and $\% \mathrm{~T}=$ antilog (2-A)

- Example : A sample in a 1-cm cell is determined with a spectrometer to transmit $80 \%$ light at a certain wavelength, if the absorpitivity of this substance at this wavelength is $\mathbf{2}$, what is the concentration of the substance ?
- solution : the \% transmittance is $\mathbf{8 0 \%}$

$$
\begin{aligned}
\text { so } T & =\% T / 100 \\
& =0.8
\end{aligned}
$$

$$
\begin{aligned}
& \text { as } A=\log 1 / \mathrm{T}=a . b . c \\
&=\log 1 / 0.8 \\
&=2 \times 1 \times c \\
& \log 1.2=2 \mathrm{c} \\
& c=0.1 / 2
\end{aligned}
$$

- Example : A solution containing 1 mg iron ( as thiocyanate complex ) in 100 ml was observed to transmit $70 \%$ of the incident light.
a) what is the absorbance of the solution at this wavelength ?
b) what fraction of light would be transmitted by a solution of iron 4 times as concentrated ?
- solution: a) $\mathrm{T}=0.7$

$$
A=\log 1 / 0.7=\log 1.43=0.155
$$

0.155 = a.b. $(0.01 \mathrm{~g} / \mathrm{L})$
a.b $=15.5 \mathrm{~L} / \mathrm{g}$
$A=15.5 \mathrm{~L} / \mathrm{g}(4 \times 0.01 \mathrm{~g} / \mathrm{L})=0.62$
$\mathrm{A}=\log 1 / \mathrm{T}=-\log \mathrm{T}=0.62$
$\mathrm{T}=0.24$

- or more directly the absorbance of the new solution :

$$
\mathrm{A} 1 / \mathrm{A} 2=\mathrm{abc} 1 / \mathrm{abc} 2=\mathrm{c} 1 / \mathrm{c} 2
$$

A2 = A1 x c2/c1

$$
=0.155 \times 4 / 1=0.62
$$



B1999 ty milaik Pitizz

