

Medical Physics

The Diffraction of Laser from grating

Experiment Five

Asst. Lect. Leal Abdullah Hamza

leal.abdullah@mustaqbal-college.edu.iq

2020-2021

Aim of Exp.:

To determine the wavelength of the Helium-Neon Laser.

Apparatus:

- 1. Laser source.
- 2. Holders.
- 3. Screen.
- 4. Grating.
- 5. Scale (cm).

Method:

By using small hole:

- Adjust the Laser rays toward the small hole in order to include the diffraction pattern (bright and dark circle).
- ✤ Measure the distance between the hole and screen (D).

***** By using Bragg's law: $n \lambda = d \sin \theta$

Calculate the wavelength of Laser light.

Readings

Make the following table.

n	x
1	
2	
3	
4	

$d\sin\theta = n\lambda$

 Θ is very small then $\sin \Theta = \tan \Theta = x/D$

Then:

 $d x/D = n\lambda$

 $d = n / x \lambda D$

d= slope λ D

Where:

d: is the width of the slit (cm, mm)

 $\lambda:$ is the wavelength of laser (nm, A°)

D: is the distance from the location of the screen to the location of the single slit (cm)

n: is the range of the fringes.

 θ : is the diffraction angle.