

Al-Mustaqbal University College

Department of Radiology Techniques

First Stage

General Chemistry

Fifth Lecture

BUFFER SOLUTIONS

Buffer Solution: is a solution that resist any change in pH

(maintain pH approximately constant) when added amount of an acid or base.

Buffer Solutions divided into two types:

Buffer Solutions

Acidic Buffers

are made from a weak acid and its salts.

Example: CH₃COOH – CH₃COONa

- CH₃COOH (weak acid)
- CH₃COONa (salt)

Basic Buffers

are made from a weak base and its salts.

Example: NH₃ – NH₄Cl

- NH₃ (weak base)
- NH₄Cl (salt)

How a buffer works?

The Henderson-Hasselbalch equation is an equation that is often used to perform the calculations required in preparation of buffers for use in the laboratory.

Buffer solution that formed of weak acid and its salt:

3

Buffer solution formed of weak base and its salt:

Solved Problems

Problem 1/ Calculate the pH of buffer of 0.3M CH₃COONa in 0.09M CH₃COOH? $K_a = 1.8 \times 10^{-5}$

Solution:

$$pH = pK_a + log \frac{[salt]}{[acid]}$$

$$\mathbf{pH} = -\log 1.8 \times 10^{-5} + \log (0.3 / 0.09)$$

pH = 4.74 + 0.522

pH = 5.262

Problem 2/ Calculate the pH of buffer of 0.28M NH₄Cl in 0.07M NH₃? $K_b = 1.76 \times 10^{-5}$

Solution:

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

$$pOH = -\log 1.76 \times 10^{-5} + \log (0.28 / 0.07)$$

pOH = 4.75 + 0.602

pOH = 5.352

pH = 14 - 5.352

pH = 8.648