A-Mustugbal University College Department of Radiology Techniques - First Stage General Chemistry

Fourth Lecture

Asst. Lec.

 Alaa Salman Al-LabbanACIDS AND BASES

Out line

\checkmark Acids \& Bases

\checkmark Arrhenius Concept
\checkmark Brønsted-Lowry Concept
\checkmark Lewis Concept
\checkmark Strength of Acids and Bases
\checkmark Ionization of water
\checkmark Acid or Base Ionization Constant
\checkmark pH of Solution

Acids and Bases

Acid: The word acid comes from Latin acere meaning sour

Base:
is an alkaline, which is derived from Arabic alqali.

Acid \& Base Concepts

nolinghe

Bronsted-Lowry Concept

Arrhemius Concept

Acia: Is a substance that produces $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in water.

Base: Is a substance that produces OH^{-}in water.

Bromsted - Lowry Concept

Acid:

Is a substance capable of donating a proton.

Base:

Is a substance capable of accepting a proton.

Lewis Concept

Acid: Is as an electron pair acceptor.

Base: Is as an electron pair donor.

Strength of Acids and Bases

> Strong Acid: is an acid that dissociated completely in solution and yields hydrogen ions H^{+}.
> For example, hydrochloric acid (HCI) is a strong acid.
> Their conjugate bases are quite weak.

(aq)
hydrogen chloride
molecule $\rightarrow \rightarrow$ hydrogen ion + chloride ion

Strength of Acids and Bases

$>$ Strong Base: a base that dissociated completely in solution and yield hydroxide ions OH:
> For example, sodium hydroxide (NaOH) is a strong base.
> Their conjugate acids are weak acids.

$$
\underbrace{\mathrm{NaOH}_{\mathrm{Maq}}}_{\begin{array}{c}
(s)
\end{array}}+\mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

Strength of Acids and Bases

Iomization of water

TM
> Water acts either as an acid or a base.
$>$ When one molecule react with another to form hydronium ion $\mathrm{H}_{3} \mathrm{O}^{+}$and hydroxyl ion OH^{-}ion this process called autoionization or self-ionization.

Iomization of water

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]
$$

$>$ Where K_{w} lonization constant for water.
$>$ In pure water at $25^{\circ} \mathrm{C}$, The concentration of hydronium ion and hydroxyl ion is equal at equilibrium between water and (hydronium, hydroxyl) ions.
$>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right] \text {at } 25^{\circ} \mathrm{C}
$$

Iomization of water

$>K_{w}$ is a constant at $25^{\circ} \mathrm{C}$:

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]
$$

$$
K_{w}=\left(1 \times 10^{-7}\right) \times\left(1 \times 10^{-7}\right)
$$

$$
K_{w}=1 \times 10^{-14}
$$

Acid or Base Iomization Constant

$>$ It is a measure of the strength of acid or base. The ionization constant has the same equilibrium expression.
> Weak Acid: like strong acid gives hydrogen ions but its dissociated partly in solution.
> The dissociation of a weak acid can be described by an equilibrium reaction:

$$
\left(H A(a q)+H_{1}(1)=A^{-}(a q)+H_{10} 0^{+}(a q)\right.
$$

Acid or Base Ionization Constant

> The expression for the equilibrium constant is:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\text { Products }}{\text { Re actants }}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]}
$$

$$
\mathbf{p K}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}
$$

\Rightarrow Example of weak acid is acetic acid:

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}+\mathrm{H}^{+}
$$

$\Rightarrow K_{a}$ for acetic acid is:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

Acid or Base Iomization Constant

> Weak Base: like strong base gives hydroxyl ions but its dissociated partly in solution.
> The dissociation of a weak base can be described by an equilibrium
 reaction:

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \neq \mathrm{BH}+\mathrm{OH}-\mathrm{O}
$$

Acid or Base Iomization Constant

> The expression for the equilibrium constant is:

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left.\mathrm{B} \mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

$$
p K_{b}=-\log K_{b}
$$

- Example for weak base is Ammoina:

$$
\mathrm{NH}_{3(a n)}+\mathrm{H}_{2} \mathrm{O}(\|) \rightleftharpoons \mathrm{NH}_{4}^{+}(a n)+\mathrm{OH}_{(a q)}
$$

$>\mathrm{K}_{\mathrm{b}}$ for Ammoina is:

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

pH of Solution

> Is a measure of the acidity or basicity of a solution.
$>\mathrm{pH}$ of solution is defined as the negative logarithm of the molar hydrogen-ion concentration.
> Expressed as a - $\log [\mathrm{H}+]$

$$
\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]
$$

> For example, a solution of HCI with a pH of 3.0 has a concentration of hydronium ions (hydrogen ions) of $1 \times 10^{-3} \mathrm{M}$.

PH scale: from 0-14
Asst. Lec. ALAA SALMAN AL-LABBAN

pH of Solution

$>$ Pure water (natural solution) has $\left[\mathrm{H}^{+}\right]=10^{-7}$ and thus $\mathrm{pH}=7$.

$>$ Acid have a high $\left[\mathrm{H}^{+}\right]$and thus a low $\mathrm{pH}<7$.

$>$ Bases have a low $\left[\mathrm{H}^{+}\right]$and thus a high pH > 7.

pH of Solution

$>$ POH is the opposite of PH, and a measure of alkalinity and expressed as - $\log \left[\mathrm{OH}^{-}\right]$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

> Natural solution has $\left[\mathrm{OH}^{-}\right]=10^{-7}$ thus $\mathrm{POH}=7$.
> Basic solution has a high $\left[\mathrm{OH}^{-}\right]$and thus $\mathrm{POH}<7$.
$>$ Acidic solution has a low $\left[\mathrm{OH}^{-}\right]$and thus $\mathrm{POH}>7$.
> The relationship between pH and pOH :

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

$\bigcirc 0$

THANK YOU

