

Al-Mustaqbal University College Department of Radiology Techniques - First Stage **General Chemistry**

Fourth Lecture

Asst. Lec. Alaa Salman Al-Labban

- Acids & Bases
- Arrhenius Concept
- Brønsted Lowry Concept
- Lewis Concept
- Strength of Acids and Bases
- Ionization of water
- Acid or Base Ionization Constant
- ✓ pH of Solution

Acids and Bases

> The word acid comes from Latin acere meaning sour

Acid:

is an alkaline, which is derived from Arabic algali.

Acid & Base Concepts

Arrhenius Concept

concept

Brønsted - Lowry Concept Lewis

Concept

ooueehr

Asst. Lec. ALAA SALMAN AL-LABBAN

Lewis Concept

Is as an electron pair acceptor.

Base:

Acid:

Is as an electron pair donor.

- Strong Acid: is an acid that dissociated completely in solution and yields hydrogen ions H⁺.
- For example, hydrochloric acid (HCI) is a strong acid.
- > Their conjugate bases are quite weak.

- Strong Base: a base that dissociated completely in solution and yield hydroxide ions OH⁻.
- For example, sodium hydroxide (NaOH) is a strong base.
- > Their conjugate acids are weak acids.

- > Water acts either as an acid or a base.
- When one molecule react with another to form hydronium ion H₃O⁺ and hydroxyl ion OH⁻ ion this process called autoionization or self-ionization.

Ionization of water
$$K_w = [H_3O^+] \times [OH^-]$$

Where K_w lonization constant for water.
In pure water at 25 °C, The concentration of hydronium ion and hydroxyl ion is equal at equilibrium between water and (hydronium, hydroxyl) ions.

> $[H_3O^+] = 1 \times 10^{-7} \text{ mol/L}$ and $[OH^-] = 1 \times 10^{-7} \text{ mol/L}$

 $[H_3O^+] = [OH^-] \text{ at } 25^{\circ}C$

Ionization of water

TOTTO TO TOTTOTTOT

\succ K_w is a constant at 25 °C:

$$\mathbf{K}_{\mathbf{w}} = [\mathbf{H}_{3}\mathbf{O}^{+}] \times [\mathbf{O}\mathbf{H}^{-}]$$

$$K_w = (1 \times 10^{-7}) \times (1 \times 10^{-7})$$

$$K_w = 1 \times 10^{-14}$$

- It is a measure of the strength of acid or base. The ionization constant has the same equilibrium expression.
- Weak Acid: like strong acid gives hydrogen ions but its dissociated partly in solution.
 The dissociation of a weak acid can be described by an equilibrium reaction:

HA (aq) + H₂O (I)
$$=$$
 A⁻ (aq) + H₃O⁺ (aq)

> The expression for the equilibrium constant is:

$$K_{a} = \frac{Pr oducts}{Re ac tan ts} = \frac{[A^{-}][H_{3}O^{+}]}{[HA]}$$

$$\mathbf{pK}_{a} = -\log \mathbf{K}_{a}$$

Example of weak acid is acetic acid:

$$CH_3COOH \implies CH_3COO^- + H^+$$

 \succ K_a for acetic acid is:

$$\mathbf{K}_{a} = \frac{[\mathbf{CH}_{3}\mathbf{COO}^{-}][\mathbf{H}^{+}]}{[\mathbf{CH}_{3}\mathbf{COOH}]}$$

VICTO OT DODC TOTTCOMOTIC CONDICATIC

- Weak Base: like strong base gives hydroxyl ions but its dissociated partly in solution.
- The dissociation of a weak base can be described by an equilibrium reaction:

> The expression for the equilibrium constant is:

$$\kappa_{b} = \frac{[B H^{+}] [OH^{-}]}{[B]}$$

$$\mathbf{pK}_{\mathbf{b}} = -\log \mathbf{K}_{\mathbf{b}}$$

Example for weak base is Ammoina:

$$NH_{3(aq)} + H_2O_{(I)} \longrightarrow NH_{4^+(aq)} + OH_{(aq)}$$

K_b for Ammoina is:

$$K_b = \frac{[\mathrm{NH}_4^+][\mathrm{OH}^-]}{[\mathrm{NH}_3]}$$

- Is a measure of the acidity or basicity of a solution.
- PH of solution is defined as the negative logarithm of the molar hydrogen-ion concentration.
- Expressed as a log [H+]

$$\mathbf{pH} = -\log\left[\mathbf{H}^{+}\right]$$

For example, a solution of HCI with a pH of 3.0 has a concentration of hydronium ions (hydrogen ions) of 1x 10⁻³ M.

PH scale: from 0–14

- > Pure water (natural solution) has $[H^+] = 10^{-7}$ and thus pH = 7.
- > Acid have a high [H^+] and thus a low pH < 7.
- Bases have a low [H⁺] and thus a high pH > 7.

Asst. Lec. ALAA SALMAN AL-LABBAN

POH is the opposite of PH, and a measure of alkalinity and expressed as – log [OH⁻]

 $pOH = -\log [OH^-]$

- > Natural solution has $[OH^-] = 10^{-7}$ thus POH = 7.
- > Basic solution has a high [OH⁻] and thus POH < 7.
- > Acidic solution has a low [OH⁻] and thus POH > 7.
- The relationship between pH and pOH:

pH + pOH = 14

