- Cell Reproduction - Cell Cycle and Mitosis Lecture :5

Dr: Zainab waddah Naser

23/3/2022

CELL REPRODUCTION

- Cell Division: process by which a cell divides to form two new cells (daughter cells)
- Three types of cell division, or cell reproduction
- Prokaryotes (bacteria)

Binary fission \rightarrow divides forming two new identical cells

- Eukaryotes

Mitosis

- Cell or organism growth
- Replacement or repair of damaged cells

Meiosis

- formation of sex cells, or gametes

Why do cells divide?

I: DNA Overload

- If cells grow without limit, an "information crisis" would develop
- DNA cannot serve the needs of the increasing size of cell
2: Exchange of materials
- Food and oxygen have to cross membrane very quickly
- Waste must get out
- If cell is too large, this occurs too slowly and cell will die

PROKARYOTIC CELL DIVISION

- Binary fission

3 main steps:
I: DNA Replication—DNA is copied, resulting in 2 identical chromosomes
2: Chromosome Segregation-2 chromosomes separate, move towards ends (poles) of cell
3: Cytokinesis-cytoplasm divides, forming 2 cells

Each new daughter cell is genetically identical to parent cell

THE CELL CYCLE

CELL CYCLE-INTERPHASE

- Interphase: period of growth and DNA replication between cell divisions
- Three phases:
- G, Phase
cell increases in size
- S Phase

Replication of chromosomes

- Now two strands called sister chromatids joined by a centromere
- G_{2} Phase
organelles double new cytoplasm forms
All other structures needed for mitosis form

What are Chromosomes?

- DNA containing cell's genetic code
- Each chromosome has a matching pair

Homologous Pair

- During interphase, each chromosome copies itself

EUKARYOTIC CELL DIVISION

- DNA found on chromosomes located in nucleus of cell
- Cell cycle continuous process

Cells grow
DNA replicated
Organelles duplicated
Divide to form daughter cells
2 Main steps:
I: Mitosis (4 steps—Prophase, Metaphasє Nucleus divides

2: Cytokinesis-Cytoplasm divide, forming \angle cells

Each new daughter cell is genetically identical to parent cell

Life Cycle of the Cell

- Mitosis = nuclear division
- Mitosis is followed by cytokinesis (cell division)
- The steps of mitosis ensure that each new cell has the exact same number of chromosomes as the original

MITOSIS

- Process that divides cell nucleus to produce two new nuclei each with a complete set of chromosomes
- Continuous process
- Four phases (PMAT)
- Prophase
- Metaphase
- Anaphase
- Telophase

Mitosis

- (1)Prophase
- (2)Metaphase
- (3)Anaphase
- (4)Telophase
-PMAT

PROPHASE

1. chromosomes visible (sister chromatids)
2. centrioles migrate to the poles (only in animals)
3. nuclear membrane disappears
4. spindle forms

Prophase
The chromosomes appear condensed, and the nuclear envelope is not apparent.

METAPHASE

1. chromosomes line up on the equator of the cell
2. spindles attach to centromeres

Equator

ANAPHASE

1. sister chromatids separate
2. centromeres divide
3. sister chromatids move to opposite poles

Anaphase
The chromosomes
have separated
and are moving
toward the
poles.

Telophase

1. chromosomes uncoil • now chromatin
2. nuclear membranes reform
3. spindle disappears

CYTOKINESIS

-Occurs at end of Mitosis
--division of the cytoplasm to form 2 new daughter cells
--organelles are divided
-Daughter cells are genetically identical

Cells return to interphase

Control of the Cell Cycle

- Regulatory proteins called cyclins control the cell cycle at checkpoints:
- GI Checkpoint-decides whether or not cell will divide
- S Checkpoint-determines if DNA has been properly replicated
- Mitotic Spindle Checkpoint-ensures chromosomes are aligned at mitotic plate

The Cell Cycle and the Checkpoints

CANCER CELLS

- Result of uncontrolled cell division of cells that have lost ability to regulate cell cycle
Reproduce more rapidly than normal cells
Masses formed Loallos of Normal Growth Control

