

Al-Mustaqbal University College

Department of Radiology Techniques

First Stage

General Chemistry

Sixth Lecture

VOLUMETRIC ANALYSIS

Volumetric Analysis: is generally one of the **quantitative methods** that deal with determination of quantity (amount) of analyte (sample) by measuring **the volume**.

Volumetric analysis is carried in liquid media and is one of direct chemical methods. Volumetric analysis based on titration.

Titration: A technique for determining the concentration of a solution by measuring **the volume** of one solution needed to completely react with another solution. Titration process involves addition of solution of known concentration from burette to the measured volume of analyte.

Equivalence Point

It is a **theoretical point** where the amount of two reactants is just equivalent.

End Point

It is a **practical point** at which the reaction is observed to be complete, this point is usually observe with the help of indicator.

In volumetric methods the titration error E_t is given by:

$$\mathbf{E}_{t} = \mathbf{V}_{ep} - \mathbf{V}_{eq}$$

Where V_{ep} is the **actual volume** of reagent required to reach the end point.

 V_{eq} is the **theoretical volume** to reach the equivalence point.

Asst. Lec. ALAA SALMAN AL-LABBAN

1. *Neutralization Titration:* depend on a chemical reaction between the analyte and a standard reagent, (depend on the neutralization between an acid and a base when mixed in solution).

a- Strong Acid with Strong Base:

Hydrochloric acid and **sodium hydroxide** as typical of a strong acid and a strong base.

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$$

b- Strong Acid with Weak Base:

Hydrochloric acid as the strong acid and **ammonia** solution as the weak base.

$$HC1 + NH_3 \rightarrow NH_4^+ + Cl^-$$

c- Strong Base with Weak Acid:

Acetic acid as the weak acid and sodium hydroxide as the strong base.

 $CH_{3}COOH_{(aq)} + NaOH_{(aq)} \rightarrow CH_{3}COONa + H_{2}O$

2. *Precipitation Titrations:* It involves the reaction leading to formation a precipitate, where the reacting substance and standard solution react to yield a precipitate or a slightly soluble salt as the primary reaction product.

AgNO₃ + NaCl → AgCl + NaNO₃

3. *Redox Titrations:* These titrations involve oxidation-reduction reactions, where the reacting substance is oxidized or reduced by the standard solution.

 $5H_2C_2O_4_{(aq)} + 2MnO_4^-_{(aq)} + 2H^+_{(aq)} \longrightarrow 10CO_2_{(g)} + 2Mn^{2+}_{(aq)} + 8H_2O_{(l)}$

4. *Complex Titrations:* It is based on complex formation reaction mainly EDTA titrations, where the reacting substance and the standard solution react to form a soluble but very slightly dissociated complex substance.

Theory of indicators

An **indicator** is a substance, which is used to determine the end point in a titration. In acid-base **titrations**, organic substances (weak acids or weak bases) are generally used as **indicators**. They change their colour within a certain **pH** range.

The colour change and the pH range of some common **indicators** are explained below:

Common Acid-Base Indicators			
Common Name	pH Range	Color of Acid	Color of Basic
		Form	Form
Methyl Violet	0.5-1.5	Yellow	Blue
Thymol Blue	1.2-2.8	Red	Yellow
	8.0-9.6	Yellow	Blue
Methyl Yellow	2.9-4.0	Red	Yellow
Methyl	3.1-4.4	Red	Yellow
Bromcresol	3.8-5.4	Yellow	Blue
Green			
Methyl Red	4.2-6.3	Yellow	Red
Bromthymol Blue	6.0-7.6	Yellow	Blue
Phenolphthalein	8.0-9.6	Colorless	Red/Pink

There are three general types of indicators, including

- 1. pH indicators
- 2. Redox indicators.
- 3. Complexometric indicators.