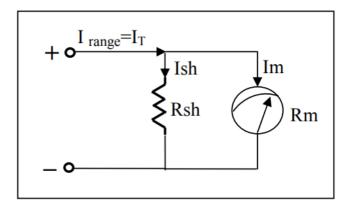

Al-Mustaqbal University College Department of Medical Instrumentation Techniques Engineering- second Class

Lec.8 Moving coil instruments

Lecturer: Dr zahraa hashim kareem

1- <u>D.c Ammeter:</u>

An Ammeter is always connected in series with a circuit branch and measures the current flowing in it. Most d.c ammeters employ a d'Arsonval movement, an ideal ammeterwould be capable of performing the measurement without changing or distributing the current in the branch but real ammeters would possess some internal resistance.



Extension of Ammeter Range:

Since the coil winding in PMMC meter is *small and light*, they can carry only small currents (μ A-1mA). Measurement of large current requires *a shunt external resistor* to connect with the meter movement, so only a fraction of the total current will passes through the meter.

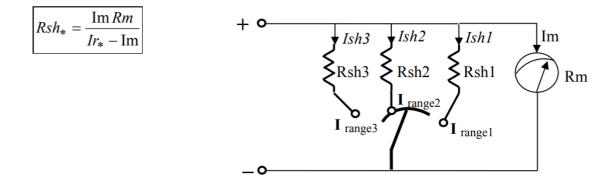
Vm = VshIm Rm = IshRsh $Ish = I_T - Im$

$$Rsh = \frac{\text{Im } Rm}{I_T - \text{Im}}$$

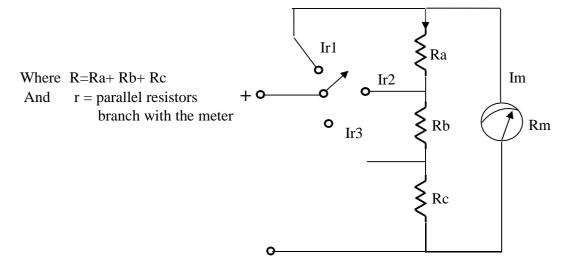
Lec.8 Moving coil instruments

<u>Example:</u>

If PMMC meter have internal resistance of 10Ω and full scale range of 1mA. Assume we wish to increase the meter range to 1A.


<u>Sol.</u>

So we must connect shunt resistance with the PMMC meter of

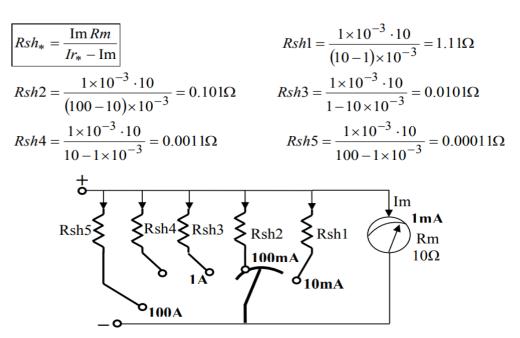

$$Rsh = \frac{\text{Im}\,Rm}{I_T - \text{Im}} \qquad Rsh = \frac{1 \times 10^{-3} \cdot 10}{1 - 1 \times 10^{-3}} = 0.01001\Omega$$

a) <u>Direct D.c Ammeter Method (Ayrton Shunt):</u>

The current range of d.c ammeter can be further extended by a number of shunts selected by a range switch; such ammeter is called a multirange ammeter.

b) Indirect D.C Ammeter Method:

Lecturer: Dr zahraa hashim kareem


Lec.8 Moving coil instruments

<u>Example (1):</u>

Design a multirange ammeter by using *direct method* to give the following ranges 10mA, 100mA, 1A, 10A, and 100A. If d'Arsonval meter have internal resistance of 10Ω and full scale current of 1mA.

Sol:

 $Rm=10\Omega$ Im=1mA

Example (2):

Design an Ayrton shunt by *indirect method* to provide an ammeter with current ranges 1A, 5A, and 10A, if PMMC meter have internal resistance of 50Ω and full scale current of 1mA.

 $Rm=50\Omega$ $I_{FSD}=Im=1mA$

$$\frac{Ir_*}{\mathrm{Im}} = \frac{Rm + R}{r_*}$$

Where R=Ra+ Rb+ Rc And r = parallel resistors branch with the meter

1- For 1A Range:

$$\frac{I1}{\mathrm{Im}} = \frac{Rm + R}{R}$$

Lec.8 Moving coil instruments

Lecturer: Dr zahraa hashim kareem

$$\frac{1A}{1mA} = \frac{50 + R}{R} \qquad R = 0.05005\Omega$$
2- For 5A Range:

$$\frac{I2}{Im} = \frac{Rm + R}{Rb + Rc} \qquad r = Rb + Rc$$

$$\frac{5A}{1mA} = \frac{50 + 0.05005}{Rb + Rc} \qquad Rb + Rc = 0.01001\Omega$$

$$Ra = R - (Rb + Rc) \qquad Ra = 0.05 - 0.01001 = 0.04004 \Omega$$
3 For 10 A Parage

3- For 10A Range:

$$\frac{I3}{Im} = \frac{Rm + R}{Rc} \qquad r = Rc$$

$$\frac{10A}{1mA} = \frac{50 + 0.05005}{Rc} \qquad Rc = 5.005 \times 10^{-3} \Omega$$

$$Rb = 0.01001 - 5.005 \times 10^{-3} = 5.005 \times 10^{-3} \Omega$$