EQUILIBRIUM

we defined equilibrium as the condition in which the resultant of all forces and moments acting on a body is zero.

$$
\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \quad \Sigma M_{O}=0
$$

Strategy

1. Identify all forces with locations
2. Don't forget pivot point forces
3. Construct force equation
4. Construct moment equation
5. Algebra
6. Math
7. Check your answer

Problem $1 / \mathrm{A} 12 \mathrm{Kg}$ mass is hung from two cables as shown. What are the tensions in cables A and B ?

Write out $\Sigma F_{x}=0$ and $\Sigma F_{y}=0$ 'statements'.

$$
\begin{gathered}
A \\
\Sigma F_{x}=A \cos 60
\end{gathered} \frac{B}{B} \begin{gathered}
C \\
\hline
\end{gathered}
$$

Write out $\Sigma F_{x}=0$ and $\Sigma F_{y}=0$ 'statements'.

Problem 2/ Determine the magnitudes of the forces \mathbf{C} and T, which, along with the other three forces shown, act on the bridge truss joint.

Solution
$\left[\Sigma \mathrm{F}_{\mathrm{x}}=0\right] \quad 8+\mathrm{T} \cos 40+\mathrm{C} \sin 20-16=0$
$0.766 \mathrm{~T}+0.342 \mathrm{C}=8$
$\left[\Sigma \mathrm{F}_{\mathrm{y}}=0\right] \quad T \sin 40-\mathrm{C} \cos 20-3=0$
$0.643 \mathrm{~T}-0.940 \mathrm{C}=3$

Simultaneous solution of Equations (1) and (2) produces

$$
\mathrm{T}=9.09 \mathrm{kN} \quad \mathrm{C}=3.03 \mathrm{kN}
$$

Problem 3/ Calculate the tension T in the cable which supports the 1000 lb load with the pulley arrangement shown. Each pulley is free to rotate about its bearing, and the weights of all parts are small compared with the load.

Solution

Class: $1^{\text {st }}$ echanical Engineering Lecturer: Mays Khalid Mohammad E-mail: mays.khalid@mustaqbal-college.edu.iq

at Point A I/

$$
\begin{align*}
& \sum F_{y}=0 \\
& T_{1}+T_{2}-1000=0 \\
& T_{1}+T_{2}=1000 \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\therefore T_{1}=T_{2} \tag{a}
\end{equation*}
$$

Sub. (2) in 1

$$
\begin{aligned}
& 2 T_{1}=1060 \\
& \therefore T_{1}=T_{2}=500 \mathrm{Ib}
\end{aligned}
$$

Class: $1^{\text {st }}$
Subject: Mechanical Engineering
Lecturer: Mays Khalid Mohammad E-mail: mays.khalid@mustaqbal-college.edu.iq

Problem 4

The mass center G of the $1400-\mathrm{kg}$ rear-engine car is located as shown in the figure. Determine the normal force under each tire when the car is in equilibrium. State any assumptions.

Solution

$$
\begin{aligned}
& +\uparrow F=0: 2 N_{f}+2 N_{r}-1400(9.81)=0 \\
& +\Sigma M_{F}=0:-1400(9.81)(1386)+2 N_{r}(1386+964)=0 \\
& \text { Solution: }\left\{\begin{array}{l}
N_{f}=2820 \mathrm{~N} \\
N_{r}=4050 \mathrm{~N}
\end{array}\right.
\end{aligned}
$$

