المادة: الرياضيات

المرحلة: الاولى التدريسي : م.م رياض حامد

2021-2022

PREREQUISITES FOR CALCULUS (المتطلبات الاساسية للتفاضل والتكامل)

(المجموعات والفترات) Sets and Intervals

DEFINITIONS:

<u>Set</u>: is a collection of things under certain conditions. <u>Example 1:</u>

$$A = \{1, 3, 5, 8, 10\};$$

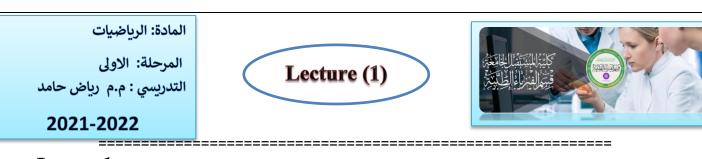
A is a set, 1,3,5,8,10 are elements.

<u>Real Numbers (R)</u>: is a set of all rational and irrational numbers. R= $\{-\infty, +\infty\},\$

Integer Numbers (I): a set of all irrational numbers.

I = {- ∞ ,----,-3,-2,-1,0,1,2,3,----,+ ∞ } negative and positive numbers only.

<u>Natural Numbers (N)</u>: consist of zero and positive integer numbers only. $N = \{0, 1, 2, 3, \dots, +\infty\}$

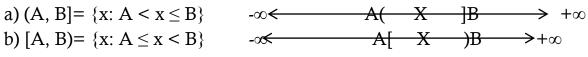


Intervals: is a set of all real numbers between two points on the real number line. (it is a subset of real numbers)

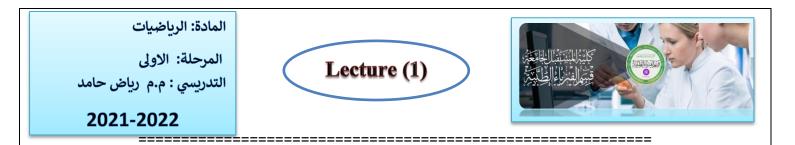
1. Open interval: is a set of all real numbers between A&B excluded (A&B are not elements in the set). $\{x: A < x < B\}$ or (A, B).

$$-\infty \leftarrow A(X)B \rightarrow +\infty$$

- 2. <u>Closed interval</u>: is a set of all real numbers between A&B included (A&B are elements in the set). {x: A ≤ x ≤ B} or [A, B].
 -∞ < A[X]B → +∞
- 3. <u>Half-Open interval (Half-Close)</u>: is a set of all real numbers between A & B with one of the end-points as an element in the set.

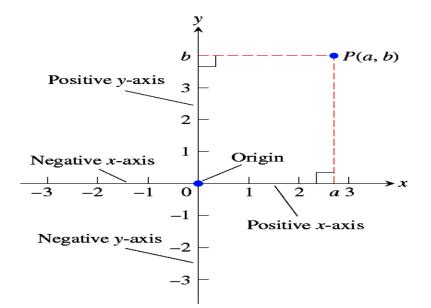


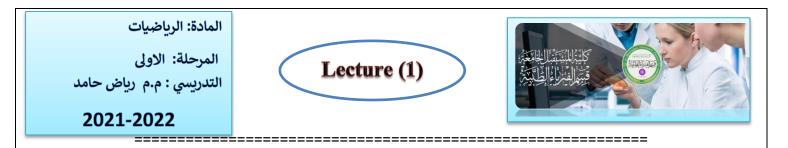
	Notation	Set description	Туре	Picture
Finite:	(<i>a</i> , <i>b</i>)	$\{x a < x < b\}$	Open	a b
	[<i>a</i> , <i>b</i>]	$\{x a \le x \le b\}$	Closed	a b
	[<i>a</i> , <i>b</i>)	$\{x a \le x < b\}$	Half-open	a b
	(<i>a</i> , <i>b</i>]	$\{x a < x \le b\}$	Half-open	a b
nfinite:	(a,∞)	$\{x x>a\}$	Open	a
	$[a,\infty)$	$\{x x \ge a\}$	Closed	a
	$(-\infty, b)$	$\{x x < b\}$	Open	
	$(-\infty, b]$	$\{x x \le b\}$	Closed	b
	$(-\infty,\infty)$	\mathbb{R} (set of all real numbers)	Both open and closed	D



(الاحداثيات في الفراغ او المستوى) Coordinate in the Plane

Each point in the plane can be represented with a pair of real numbers (a,b), the number a is the horizontal distance from the origin to point P, while b is the vertical distance from the origin to point P. The origin divides the x-axis into positive x axis to the right and the negative x-axis to the left, also, the origin divides the y-axis into positive y-axis upward and the negative x-axis downward. The axes divide the plane into four regions called quadrants.





Distance between Points and (Mid-Point Formula):

Distance between points in the plane is calculated with a formula that comes from Pythagorean Theorem:

***** Distance Formula for Points in the Plane The distance between $P(x_1, y_1)$ and $Q(x_2, y_2)$

$$\mathbf{d} = \sqrt{(\Delta \mathbf{x})^2 + (\Delta \mathbf{y})^2} = \sqrt{(\mathbf{x}_2 - \mathbf{x}_1)^2 + (\mathbf{y}_2 - \mathbf{y}_1)^2}$$

and the mid-point formula:

$$x_0 = \frac{x_1 + x_2}{2}$$
 , $y_0 = \frac{y_1 + y_2}{2}$

Example 2: find the distance between **P(-1,2)** and **Q(3,4)** and find the midpoint:

Sol.:

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
$$= \sqrt{(3 - (-1))^2 + (4 - 2)^2} = \sqrt{20} = 2\sqrt{5}$$
$$x_0 = \frac{x_1 + x_2}{2} , x_0 = \frac{-1 + 3}{2} = 1 \text{ and } y_0 = \frac{y_1 + y_2}{2} , y_0 = \frac{2 + 4}{2} = 3$$

Example 3: find the distance between **R**(**2,-3**) and **S**(**6,1**) and find the midpoint:

Sol.:

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
$$= \sqrt{(6 - 2)^2 + (1 - (-3))^2} = \sqrt{16 + 16} = \sqrt{32} = 2\sqrt{8}$$
$$x_0 = \frac{x_1 + x_2}{2} , x_0 = \frac{2 + 6}{2} = 4 \text{ and } y_0 = \frac{y_1 + y_2}{2} , y_0 = \frac{-3 + 1}{2} = -1$$

المادة: الرياضيات

المرحلة: الاولى التدريسي : م.م رياض حامد Lecture (1)

2021-2022

Slope and Equation of Line

Slope (الميل): The constant

$$\mathbf{m} = \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$$

is the slope of non-vertical line $P_1 P_2$.

Note1: Horizontal line have (**m=0**) (Δ y=0), and the vertical line has no slope or the slope of vertical line is undefined (Δ x=0).

Note2: Parallel lines have the same slope In the the lines are parallel then (**m1=m2**).

Note3: If two non-vertical lines L1and L2 are perpendicular, their slopes m1 and m2 satisfy m1*m2 = -1,

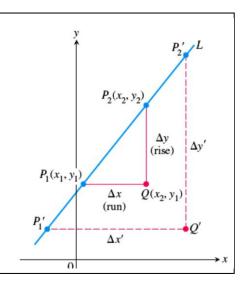
so each slope is the negative reciprocal of the other.

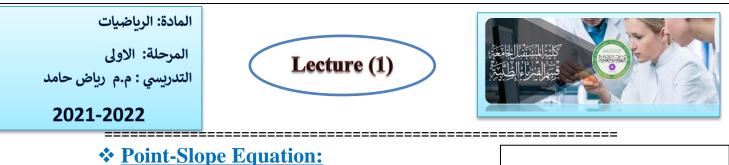
$$m_1 = \frac{1}{m_2}$$
 and $m_2 = \frac{1}{m_1}$

Example 4: Find the slope of the straight line through the two points P(3,2) and Q(4,4):

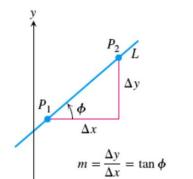
Sol.:

$$\mathbf{m} = \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{4 - 2}{4 - 3} = \mathbf{2}.$$





We can write an equation for a non-vertical straight line L if we know its slope m and the coordinate of one point $P_1(x_1, y_1)$ on it. If P(x, y) is any other point on L, then we can use two points P_1 and P to compute the slope,



$$\mathbf{m} = \frac{\mathbf{y} - \mathbf{y}_1}{\mathbf{x} - \mathbf{x}_1}$$

so that

or

$$v = v_1 + m(x - x_1)$$

 $y - y_1 = m(x - x_1)$

The equation $\mathbf{y} = \mathbf{y}_1 + \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

is the point-slope equation of the line that passes through the point $P_1(x_1,y_1)$ and has slope m.

Example 5: write an equation for the line pass through the point (2,3) with slope (-3/2).

Sol.: we substitute $x_1 = 2$, $y_1 = 3$, and m = -3/2 into the point-slope equation and obtain

$$y = y_1 + m(x - x_1)$$

$$y = 3 + \frac{-3}{2}(x - 2)$$

$$y = -\frac{3}{2}x + 6.$$

Example 6: A line pass through two points: write an equation for the line through

(-2,-1) and (3,4) Sol.: The line's slope is

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 4}{-2 - 3} = \frac{-5}{-5} = 1.$$

We can use this slope with either of the two given points in the point-slope equation;

With (x1,y1) = (-2, -1) $y = -1 + 1 \cdot (x - (-2))$ y = -1 + x + 2y = x + 1

With
$$(x2,y2) = (3, 4)$$

 $y = 4 + 1 \cdot (x-3)$
 $y = 4 + x - 3$
 $y = x + 1$

<u>Note</u>: The equation:

 $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$

is called the **slope-intercept equation** of the line with slope m and yintercept b

<u>Note</u>: The general form of straight line equation is

 $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{C} = \mathbf{0}$

Example 7: finding the slope and y-Intercept for the line 8x + 5y = 20. Sol.: solve the equation for y to put it in slope-intercept form :

> 8x + 5y = 20 5y = -8x + 20 y = -8/5 x + 4. The slope m = -8/5. the y-intercept is b = 4.

<u>H.W:</u>

2021-2022

- **1.** finding the slope and y-Intercept for the line 4x + 2y = 4.
- 2. write an equation for the line pass through (-1,-1) and (1,5).

- 3. write an equation for the line pass through the point (1,-1) with slope (5).
- 4. Find the slope of the straight line through the two points P(5,-2) and Q(3,6).
- write an equation for the horizontal line pass through the point (1,-1).