Graph of Functions (Graph of Curves) رسم (الدوال

To graph the curve of a function, we can follow the following steps:

1. Find the domain and range of the function.
2. Check the symmetry of the function
3. Find (if any found) points of intersection with x-axis and y-axis.
4. Choose some another points on the curve.
5. Draw s smooth line through the above points.

Example 3: Sketch the graph of the curve $y=f(x)=x^{2}-1$
Sol.:

Step 1: Find Df, Rf of the function?

Df $=(-\infty, \infty)$;
To find Rf : we must convert the function from $y=f(x)$ into $x=f(y)$.

$$
y=x^{2}-1
$$

$y=x^{2}-1 \rightarrow x^{2}=y+1$

$$
x= \pm \sqrt{y+1}
$$

So $\mathrm{y}+1 \geq \mathbf{0} \Rightarrow \mathrm{y} \geq-1 \Rightarrow R f=(-1, \infty)$
Step 2: Find x and y intercept:
To find x-intercept put $y=0 \rightarrow x^{2}-1=0 \rightarrow X= \pm 1$
So x-intercept are $(-1,0)$ and $(+1,0)$.
To find y -intercept put $\mathrm{x}=0 \rightarrow \mathrm{y}=0-1 \rightarrow \mathrm{y}=-1$
So y-intercept is $(0,-1)$.

Step 3: check the symmetry:
$\mathrm{x}^{2}-\mathrm{y}-1=\mathbf{0}$
$f(x,-y)=x^{2}+y-1 \neq f(x, y)$
المالمادة：الرياضيات ：الاولى

Lecture（4）

$f(-x, y)=x^{2}-y-1=f(x, y)$ so that the function is symmetry about y ．
$f(-x,-y)=x^{2}+y-1 \neq f(x, y)$
Step 4：Choose some another point on the curve．

\mathbf{x}	\mathbf{y}
$\mathbf{2}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{8}$

$(2,3),(3,8)$
Step 5：Draw smooth line through the above points

H．W
1－$y=3 x^{2}-2$
2－$y^{2}=4 x-1$

DERIVATIVES المشتّقة

the definition of derivative of the function $\mathrm{f}(\mathrm{x})$ and this denoted by y^{\prime} or $\frac{d y}{d x}$ or $\frac{d}{d x} f(x)$ or $D_{x} f(x)$ or $f^{\prime}(x)$ and given by the formula

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Example 1: Find the derivative of the function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}$ using the definition of derivative.

Sol: $f(x)=x^{2}$
$f(x+\Delta x)=(x+\Delta x)^{2}$

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}
$$

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)-x^{2}}{\Delta x}
$$

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\left(2 x \Delta x+\Delta x^{2}\right)}{\Delta x}
$$

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta x(2 x+\Delta x)}{\Delta x}
$$

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x)=2 x+0=2 x
$$

Lecture (4)

Example2: Find the derivative of the function $\boldsymbol{f}(\boldsymbol{x})=\mathbf{3 x}$ using the definition of derivative.

Sol: $\boldsymbol{f}(\boldsymbol{x})=3 \boldsymbol{x}$
$f(x+\Delta x)=3(x+\Delta x)$

$$
\begin{gathered}
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{3(x+\Delta x)-3 x}{\Delta x} \\
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{3 x+3 \Delta x-3 x}{\Delta x} \\
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{3 \Delta x}{\Delta x}=3
\end{gathered}
$$

