Lecture (2)

المحاضر : م.م رياض حامد
2021-2022

Example 8: Find the line L1 passes through the point $\mathrm{P}(1,2)$ and parallel the line L2: $\mathrm{x}+2 \mathrm{y}=3$.

SOL:
L1: $\quad \mathrm{P}(1,2) \quad \mathrm{M}=$???
L2: $\quad \mathrm{x}+2 \mathrm{y}=3$.
L1 parallel the line L 2 so that $\mathrm{m} 1=\mathrm{m} 2$.
$x+2 y=3$
$y=-1 / 2 X+3 / 2$
then $m 2=-1 / 2$ so that $m 1=-1 / 2$

$$
\begin{gathered}
y=y_{1}+m\left(x-x_{1}\right) \\
y=2+\left(-\frac{1}{2}\right)(x-1) \\
y=2+\left(-\frac{1}{2} x+\frac{1}{2}\right) \\
y=-\frac{1}{2} x+\frac{5}{2}
\end{gathered}
$$

H.W:

Find the line L1 passes through the point $(\mathbf{- 2 , 2})$ and perpendicular to the line L2: $\mathbf{2 x}+\mathbf{y}=4$.

Lecture（2）

المحاضر ：م．م رياض حامد
2021－2022

The Distance from a Point to a Line：

The distance（d）between the line L is $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ and the point $P\left(x_{1}, y_{1}\right)$ ：

$$
d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}
$$

Example 9：Find the distance from the point $\mathrm{P}(2,1)$ to the line $\mathrm{y}=\mathrm{x}+2$ SOL：
1－put the line in the general form $A x+B y+C=0$

$$
\begin{gathered}
\mathrm{y}=\mathrm{x}+2 \\
-\mathrm{x}+\mathrm{y}-2=0 \\
\text { so that } \mathrm{A}=-1 \quad \mathrm{~B}=1, \mathrm{C}=-2 \quad, x_{1}=2, y_{1}=1 \\
\boldsymbol{d}=\frac{\left|\mathbf{A} \mathbf{x}_{1}+\mathbf{B} \boldsymbol{y}_{1}+\mathbf{C}\right|}{\sqrt{A^{2}+\mathbf{B}^{2}}}=\frac{|-\mathbf{1} *(\mathbf{2})+\mathbf{1} *(\mathbf{1})+(-\mathbf{2})|}{\sqrt{(-\mathbf{1})^{2}+(\mathbf{1})^{2}}} \\
=\frac{|-3|}{\sqrt{2}}=\frac{3}{\sqrt{2}} .
\end{gathered}
$$

H．W：

1－Find the distance from the point $P(3,2)$ to the line $y=3 x-4$ ．
2－Find the distance from the point $P(-4,1)$ to the line $y=-2 x+1$ ．
3－Find the following：
－The slope of the line $2 x+3 y-5=0$ ？
－The distance from the above line to the point $\mathrm{P}(-1,0)$ ．

Lecture（2）

المحاضر ：م．م رياض حامد
2021－2022

Functions（الدوال

DEFINITION：Function

A function is a set D （domain）to a set R （range）is a rule that assigns to unique（single）element $f(x) \in R$ to each element $x \in D$ ．

$$
\boldsymbol{F}: \boldsymbol{X} \rightarrow \boldsymbol{F}(\boldsymbol{X}) \text { it means that } \mathrm{f} \text { sends } \mathrm{x} \text { to } \mathrm{f}(\mathrm{x})=\mathrm{y}
$$

－The set of x is called the＂Domain＂of the function（ D_{f} ）．
－The set of y is called the＂Range＂of the function（Rf）．
Domain（Df）：is the set of all possible inputs（x－values）．
Range（ $\mathbf{R f}$ ）：is the set of all possible outputs（ y －values）．

Note：To find Domain（Df）and the Range（Rf）the following points must be noticed：

1－The denominator in a function must not equal zero（never divide by zero）．
2－The values under even roots must be positive．

Lecture (2)

المحاضر : م.م رياض حامد

Examples: Find the Domain (Df) and Range (Rf) of the following functions:
1- $y=f(x)=\frac{1}{x}$
Sol: denominator must not equal zero

$$
x \neq 0
$$

$$
\checkmark \overline{\mathrm{Df}}=\mathrm{R} /\{0\}
$$

To find Rf : we must convert the function from $y=f(x)$ into $x=f(y)$.

$$
y=\frac{1}{x} \rightarrow x=\frac{1}{y}
$$

$\checkmark \operatorname{Rf}=\mathrm{R} /\{0\}$.

2- $y=\sqrt{3-X}$

$$
3-X \geq 0 \rightarrow 3 \geq X
$$

$D f=\{x \in R / x \leq 3\}$

To find Rf : we must convert the function from $\mathrm{y}=\mathrm{f}(\mathrm{x})$ into $\mathrm{x}=\mathrm{f}(\mathrm{y})$.

$$
\begin{aligned}
& y=\sqrt{3-x} \\
& y^{2}=3-x \\
& x=3-y^{2}
\end{aligned}
$$

$\checkmark R f=\{y \in R\}$.
H.W: Find the Domain (Df) and Range (Rf) of the following functions:

1- $y=\frac{1}{x^{2}}$
2- $y=2 x^{2}$
3- $y=\sqrt{5-2 X}$

Lecture (2)

المحاضر : م.م رياض حامد

Sums, Difference, Product and Ouotients of Functions: جمع، طرح، ضرب وقسمة الدوال

Definition: If F and G are functions, then we define the functions
\checkmark Sum
$\rightarrow(\mathrm{F}+\mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x})$
\checkmark Difference $\rightarrow(\mathrm{F}-\mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x})-\mathrm{G}(\mathrm{x})$
\checkmark Product $\rightarrow(\mathrm{F} * \mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{x})$
\checkmark Quotient $\rightarrow(\mathrm{F} / \mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x}) / \mathrm{G}(\mathrm{x})$, where $g(x) \neq 0$

Example 1: Combining Functions Algebraically

The function defined by the formulas

$$
f(x)=\sqrt{x} \text { and } g(x)=\sqrt{1-x}
$$

Function	Formula
$f+g$	$(f+g)(x)=\sqrt{x}+\sqrt{1-x}$
$f-g$	$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$
$g-f$	$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$
$f \circ g$	$(f \circ g)(x)=f(x) g(x)=\sqrt{x(1-x)}=\sqrt{x-x^{2}}$
f / g	$\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\sqrt{\frac{x}{1-x}}$
g / f	$\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\sqrt{\frac{1-x}{x}}$

H.W: Combining Functions Algebraically The function defined by the formulas $f(x)=3 x$ and $g(x)=1-x^{2}$.

