

Al-Mustaqbal University College

Department of Medical Instrumentation Technologies

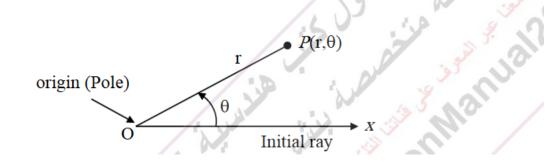
Mathematics II / Second Stage

By

Lecturer.Dr.Diyar Hussain Habeeb

Polar coordinates

To define polar coordinate, we first fix an **origin O** (called the **pole**) and **initial ray** from O. Then each point P can be located by assigning to it a **polar coordinate pair** (r, θ) in which r gives the directed distance from O to P and θ gives the directed angle from the initial ray to ray OP.

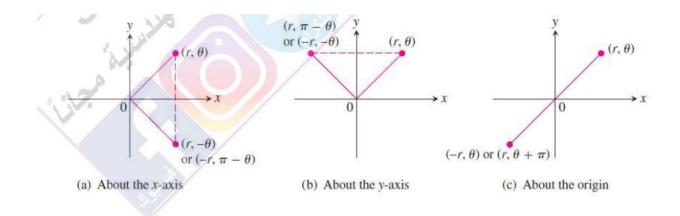


Graphing in polar coordinates:

Symmetry:

Symmetry tests for polar graphs.

- **1.** symmetry about the *x* axis: If the point (r, θ) lies on the graph, the point $(r, -\theta)$ or $(-r, \pi \theta)$ lies on the graph.
- 2. symmetry about the y-axis: If the point (r, θ) lies on the graph, the point $(r, \pi \theta)$ or $(-r, -\theta)$ lies on the graph.
- **3.** symmetry about the origin: If the point (r, θ) lies on the graph, the point $(-r, \theta)$ or $(r, \theta \pi)$ lies on the graph.



The Complex Number

Definition. A complex number is an object of the form

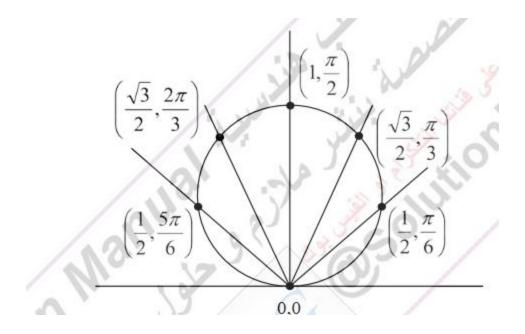
a + bi,

where *a* and *b* are real numbers and $i^2 = -1$.

Example: Sketch the graph of the equation $r = \sin \theta$ in polar coordinates

Solution:

θ	0	π	π	π	2π	5π	π	7π	4π	3π	5π	11π	2π
		6	3	$\overline{2}$	3	6		6	3	2	3	6	
												1	0
$r = \sin \theta$	0	1	$\sqrt{3}$	1	$\sqrt{3}$	1	0	1	$\sqrt{3}$	-1	$\sqrt{3}$	1	0
		2	$\overline{2}$		$\overline{2}$	2		2	$\overline{2}$		$\frac{-2}{2}$	$\sqrt{2}$	23
									10		17		18 0
									0		6	~	0



Ex2) Draw r=a(1-cos θ), where (a) is any positive number?

Sol)

1- check the symmetry:

a) About origin point, r=a(1+cos θ) → -r=a(1+cos θ) change
 b) About x-axis, r=a(1+cos θ) → r=a(1+cos (-θ)) unchanged
 c) About y-axis, r=a(1+cos θ) → -r=a(1+cos (-θ)) change

symmetry about x-axis only.

2- Make the table between (θ) and (r) :

θ	0	60(π/3)	90(π/2)	120(2 π/3)	180(π)
r	2a	1.5 a	а	0.5 a	0

Ex3) Graph the Curve $r^2 = 4 \cos\theta$.

Sol)

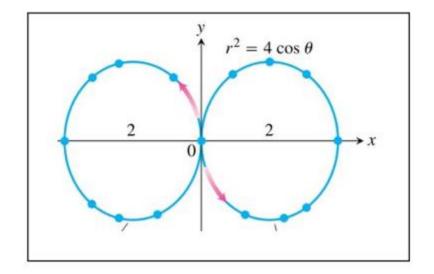
1- check the symmetry:

a) About origin point, $r^2 = 4 \cos\theta$ $(-r)^2 = 4 \cos\theta$ unchanged b) About x-axis, $r^2 = 4 \cos\theta$ $r^2 = 4 \cos(-\theta)$ unchanged c) About y-axis, $r^2 = 4 \cos\theta$ $(-r)^2 = 4 \cos(-\theta)$ unchanged

symmetry about origin point, x-axis, and y-axis.

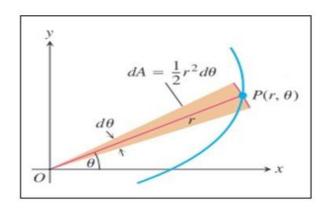
2- Make the table between (θ) and (r) :

θ	0	30(π/6)	45(π/4)	60(π/3)	90(π/2)
r	± 2	± 1.9	± 1.7	± 1.4	0



Plane Area In Polar System

$$A = \int_{\theta 1}^{\theta 2} \frac{1}{2} r^2 d\theta$$



Ex1) find the area of the region that is bounded by the curve $r=1+\cos\theta$

Sol)

$$A = \int_{\theta_1}^{\theta_2} \frac{1}{2} r^2 d\theta$$

$$A = \int_{\theta_1}^{\theta_2} \frac{1}{2} r^2 d\theta$$

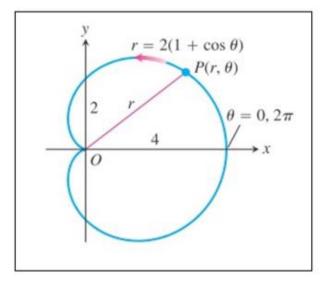
$$A = 2 \int_0^{180^\circ} \frac{1}{2} (1 + \cos \theta)^2 d\theta$$

$$A = \int_0^{180^\circ} (1 + 2\cos\theta + \cos\theta 2) d\theta$$

$$A = \int_0^{180^\circ} (1 + 2\cos\theta + \frac{1 + \cos 2\theta}{2}) d\theta$$

$$A = \int_0^{180^\circ} (\frac{3}{2} + 2\cos\theta + \frac{\cos 2\theta}{2}) r^2 d\theta$$

$$A = \left[\frac{3}{2} \theta + 2\sin\theta + \frac{\sin 2\theta}{4}\right]_0^{\pi} = \frac{3}{2}\pi$$



Ex2) find the area of the smaller loop of the curve $r = 1+2\cos\theta$

Sol) it is symmetry about x-axis

θ	0	60	90	120	180
r	3	2	1	0	-1

$$A = \int_{\theta_1}^{\theta_2} \frac{1}{2} r^2 d\theta$$

A =
$$2 \int_{\frac{2\pi}{3}}^{\frac{\pi}{2}} \frac{1}{2} (1 + 2\cos\theta)^2 d\theta$$

