

Department of Computer Engineering Techniques (Stage: 4) Mobile Communications Msc. Musadaq Mahir

MusaddaqMahir@mustaqbal-college.edu.iq

Class: 4th

MOBILE COMMUNICATIONS

Tetorial 4

Chapter Three

Traffic Engineering

By

Msc. Musadaq Mahir

Department of Computer Engineering Techniques (Stage: 4) Mobile Communications Msc. Musadaq Mahir

MusaddaqMahir@mustaqbal-college.edu.iq

Q1\ We record data in the Table below by observing the activity of a single customer line during an eight-hour period from 9:00 A.M. to 5:00 P.M. Find the traffic intensity during the eight-hour period, and during busy hour (BH) which occurs between 3:00 P.M. and 5:00 P.M.

Call no.	Call started	Call ended	Call duration (min.)
1	9:15	9:18	3.0
2	9:31	9:41	10.0
3	10:17	10:24	7.0
4	10:24	10:34	10.0
5	10:37	10:42	5.0
6	10:55	11:00	5.0
7	12:01	12:02	1.0
8	2:09	2:14	5.0
9	3:15	3:30	15.0
10	4:01	4:35	34.0
11	4:38	4:43	5.0

Solution

$$\lambda = \frac{11}{8} = 1.375 calls / hour$$

Total call minutes = 3 + 10 + 7 + 10 + 5 + 5 + 1 + 5 + 15 + 34 + 5 = 100 minutes

The average holding time in hours per call is:

$$H = \frac{100}{11} \times \frac{1}{60} = 0.1515 hours/call$$

The traffic intensity is

$$A = \lambda H = 1.375 \times 0.1515 = 0.208$$
 Erlangs = 7.5 CCS

The busy hour (BH) is between 3:00 P.M. and 5:00 P.M. Since there are only three calls between this periods, we can write:

Call arrival rate = 3/2 = 1.5 calls/hour

The average call holding time during BH: H= (15+5+34)/3 *1/60 = 0.3 hours/ callThe traffic intensity during BH is: $A = \lambda H = 1.5 \times 0.3 = 0.45 \text{Erlangs} = 16.2 \text{ CCS}$.

Q2/ We record data in the table below by observing the activity of a single customer line during an eight-hour period from 9:00 A.M. to 5:00 P.M. Find the traffic intensity

- 1- during the eight-hour period
- **2-** during busy hours (BH) which occurs between 2:00 P.M. and 5:00 P.M. (i.e. 3 hour)

Call no.	Call started	Call ended	Call duration (min.)
1	9:15	9:18	3.0
2	9:31	9:41	10.0
3	10:17	10:24	7.0
4	10:24	10:34	10.0
5	10:37	10:42	5.0
6	10:55	11:00	5.0
7	12:01	12:02	1.0
8	2:09	2:14	5.0
9	3:15	3:30	15.0
10	4:01	4:35	34.0
11	4:38	4:43	5.0

$$\lambda = \frac{11}{8} = 1.375 calls / hour$$

Total call minutes = 3 + 10 + 7 + 10 + 5 + 5 + 1 + 5 + 15 + 34 + 5 = 100 minutes The average holding time in hours per call is:

$$H = \frac{100}{11} \times \frac{1}{60} = 0.1515 hours/call$$

The traffic intensity is

$$A = \lambda H = 1.375 \times 0.1515 = 0.208 Erlangs = 7.5 CCS$$

The busy hour (BH) is between 2:00 P.M. and 5:00 P.M.

The average call holding time during BH:

$$H = \frac{15 + 5 + 34 + 5}{4} = 14.75 \,\text{min/call} = 0.245 \,\text{hours/call}$$

$$\lambda = \frac{4}{3} = 1.333 calls / hour$$

$$A = \lambda H = 1.333 \times 0.245 = 0.327$$
 Erlangs

Q3 In order to determine voice traffic on a line, we collected the following data during a period of **90 minutes**. Calculate the traffic intensity in Erlangs and CCS.

Traffic data used to estimate traffic intensity.

Call no.	Duration of call (s)
1	60
2	74
3	80
4	90
5	92
6	70
7	96
8	48
9	64
10	126

Solution:

$$\frac{90}{60} = 1.5 \ hour$$

$$\lambda = \frac{10}{1.5} = 6.667 calls/hour$$

Average call holding time:

$$H = \frac{(60 + 74 + 80 + 90 + 92 + 70 + 96 + 48 + 64 + 126)}{10} = 80 \text{ sec/call}$$

$$A_u = \lambda H = 6.667 \times \frac{80}{3600} = 0.148 Erlangs = 5.33 CCS$$

Q4In a wireless network each subscriber generates two calls per hour on the average and a typicalcall holding time is **120 seconds**. What is the traffic intensity? **Solution:**

$$A_u = \lambda \times H = 2 \times \frac{120}{3600} = 0.0667 \ Erlangs = 2.4CCS$$

Q5\ In order to determine voice traffic on a line, we collected the following data during a period of **120 minutes**. Calculate the traffic intensity in Erlangs and CCS.

Call no.	Duration of call (s)
1	58
2	63
3	47
4	120
5	55
6	95
7	111
8	66

$$\lambda = \frac{8}{2} = 4 \ calls/hour$$

Average call holding time:

$$H = \frac{58 + 63 + 47 + 120 + 55 + 95 + 111 + 66}{8} = \frac{615}{8} = 76.875 \ sec/call$$

$$A_u = \lambda \times H = 4 \times \frac{76.875}{3600} = 0.08542 \ Erlangs = 3.075CCS$$

Q6\ Define Sectoring and Cell splitting

Solution:

- **1. Sectoring**: is the technique for decreasing co-channel interference by using directional antennas. A single Omni-directional antenna at the base station is replaced by several directional antennas, each radiating within a specified *sector*.
- **2. Cell splitting**: is the process of subdividing a congested cell into smaller cells, each with its own base station and a corresponding reduction in antenna height and transmitter power.