# Al-Mustaqbal University CollegeDepartment of Medical InstrumentationTechniques Engineering First class 

## Lecture Four

Exponential function and logarithmic function .

Lecture :Suhair Hussein Talib

## The Logarithmic function:

The logarithmic was discovered by Noble man John Napier (1550-1617)

$$
y=f(x)=\log _{b} x \rightarrow x=b^{y}
$$

Where $\mathbf{y}$ is the logarithm, $\mathbf{x}$ is the number, $\mathbf{b}$ is the base.
If $b=10$, we write $y=\log x$ or $y=\log x$

$$
\begin{aligned}
& \text { If } b=e=2.7183 \text {, we write } \\
& y=\log _{e} x \quad \text { or } \quad \log x=y \rightarrow y=\ln x
\end{aligned}
$$

Where ( $\ln$ ) is read natural logarithm.

## Derivative of the natural logarithm:

If $y=f(x)=\ln x$ then: $\quad \frac{d y}{d x}=f(x)=\frac{1}{x}$
Example: Find $\frac{d y}{d x}$ of the following functions:
1- $y=\ln \left(x^{3}+2 x^{2}-1\right)$
Sol:

$$
\frac{d y}{d x}=\frac{1}{x^{3}+2 x^{2}-1} \cdot\left(3 x^{2}+4 x\right)
$$

2- $y=\ln \left(x^{-2}+\sin ^{2} 3 x\right)$
Sol:

Al-Mustaqbal University College
Medical Instrumentation Engineering Techniques Department


$$
\frac{d y}{d x}=\frac{1}{x^{-2}+\sin ^{2} 3 x} \cdot-2 x^{-3}+2 \sin (3 x) \cos (3 x) \cdot 3
$$

3- $y=\sin ^{-1}(\ln x) \cdot \ln \left(\sin ^{-1} 3 x\right)$
Sol:

$$
\frac{d y}{d x}=\sin ^{-1}(\ln x) \cdot \frac{1}{\sin ^{-1} 3 x} \cdot \frac{3}{\sqrt{1-(3 x)^{2}}}+\ln \left(\sin ^{-1} 3 x\right) \cdot \frac{1}{\sqrt{1-(\ln x)^{2}}} \cdot \frac{1}{x}
$$

## The Exponential function:

Definition: the exponential function is defined as an inverse of natural logarithm, and denoted by: $\exp$ or $\mathbf{e}$, that is:

$$
\begin{aligned}
& \text { For } \quad-\infty<x<\infty \text { we define } y=f(x)=e^{x} \\
& \text { then } \quad x=\ln y, \quad 0<y<\infty
\end{aligned}
$$

AI-Mustaqbal University College
Medical Instrumentation Engineering Techniques Department


## Exponential Functions and Logarithm Functions



AI-Mustaqbal University College
Medical Instrumentation Engineering
Techniques Department

Example: Simplify the following expressions.
$1-e^{\ln 2}=2$
2- $\ln e^{\sin x}=\sin x$
3- $e^{\ln \left(x^{2}+1\right)}=x^{2}+1$
4- $\ln e^{-1.3}=-1.3$
$5-\ln \frac{e^{2 x}}{5}=\ln e^{2 x}-\ln 5=2 x-\ln 5$
6- $e^{\ln 2+3 \ln x}=e^{\ln 2} . e^{3 \ln x}=2 . e^{\ln x^{3}}=2 x^{3}$
7- $e^{2 x+\ln x}=e^{2 x} \cdot e^{\ln x}=x e^{2 x}$
Example: Solve for y if: $\ln (y-1)-\ln y=2 x$
Sol:

$$
\begin{aligned}
& \ln (y-1)-\ln y=2 x \rightarrow \ln \frac{y-1}{y}=2 x \\
& e^{\ln \frac{y-1}{y}}=e^{2 x} \rightarrow \frac{y-1}{y}=e^{2 x} \\
& y-1=y e^{2 x} \rightarrow y-y e^{2 x}=1 \\
& y\left(1-e^{2 x}\right)=1 \quad \rightarrow \therefore \quad y=\frac{1}{1-e^{2 x}}
\end{aligned}
$$

## ©゚uたair Hussein

Derivative of the exponential function:

$$
\text { If } y=e^{x} \text { then } \frac{d y}{d x}=e^{x}
$$

Now, if $u=u(x)$ then $y=e^{u}$

$$
\frac{d u}{d x}=e^{u} \cdot \frac{d u}{d x}
$$

Example: Find $\frac{d y}{d x}$ of the following functions.

$$
\begin{aligned}
& 1-y=e^{x^{2}+\sin 2 x} \\
& \qquad \frac{d y}{d x}=e^{x^{2}+\sin 2 x} \cdot(2 x+2 \cos 2 x)
\end{aligned}
$$

$$
2-y=e^{\left(\tan ^{-1} 2 x\right)+\ln x}
$$

$$
\frac{d y}{d x}=e^{\left(\tan ^{-1} 2 x\right)+\ln x} \cdot\left(\frac{2 x}{1+4 x^{2}}+\frac{1}{x}\right)
$$

3- $y=\tan ^{-1}\left(e^{2 x}\right)$

$$
\frac{d y}{d x}=\frac{1}{1+e^{4 x^{2}}} \cdot e^{2 x} \cdot 2=\frac{2 e^{2 x}}{1+e^{4 x^{2}}}
$$

## The Function $\boldsymbol{a}^{\boldsymbol{x}}$ :

Definition: for $a>0$, we define $a^{x}=e^{x \ln a}$
If $y=a^{x}$ then

$$
\frac{d y}{d x}=a^{x} \ln a
$$

Now if $u=u(x)$ then $y=a^{x}$

$$
\frac{d y}{d x}=a^{x} \cdot \ln a \frac{d u}{d x}
$$

Example: Find $\frac{d y}{d x}$ of the following functions.

$$
\begin{aligned}
& 1-y=2^{\sin ^{2} 2 x} \\
& \begin{aligned}
& \frac{d y}{d x}=2^{\sin ^{2} 2 x} \cdot \ln 2(2 \sin 2 x \cos 2 x .2) \\
& 2-y=3^{\tan ^{-1} 2 x} \\
& \qquad \frac{d y}{d x}=3^{\tan ^{-1} 2 x} \cdot \ln 3 \frac{2}{1+4 x^{2}}
\end{aligned}
\end{aligned}
$$

## Example

$$
\begin{aligned}
& \mathrm{y}=\log _{10}(3 x-1) \Longrightarrow \mathrm{y}^{\prime}=\frac{1}{\ln 10} * \frac{1}{3 x-1} * 3=\frac{3}{(\ln 10)(3 x-1)} \\
& \mathrm{y}=\log _{2}(8 t)^{\ln 2}=\ln 2 \log _{2} 8 t \Longrightarrow \mathrm{y}^{\prime}=\ln 2 \frac{1}{\ln 2} * \frac{1}{8 t} * 8=\frac{1}{t}
\end{aligned}
$$

## AI-Mustaqbal University College

 Medical Instrumentation Engineering Techniques Department
H.W

1. , Find $\frac{d y}{d x}, y=x^{\cos x}$
2. Solve for $x$ if $2^{x}=4^{x-1}$
3. Find $\frac{d y}{d x} e^{\sec x} \cdot \sec e^{x}$

$$
\mathrm{y}=(\mathrm{x}+1)^{\mathrm{x}} \quad=e^{x \ln (x+1)}
$$

4. 
