Al-Maustaqbal Universitiy Colluge Department of Radiodogy Technidaues - First Stage

General Chemistry

Third Lecture: Analytical Chemistry

Asst. Lec. Alaa Salman All-Labban

Out line

\checkmark What is Analytical Chemistry
\checkmark Types of Analytical Chemistry
\checkmark Qualitative and Quantitative Analysis
\checkmark Types of Quantitative Analysis
\checkmark Solutions
\checkmark Types of Solutions
\checkmark Methods of expressing concentration of solutions

What is Analytical Chemistry?

* Analytical Chemistry: is concerned with the chemical characterization of matter.
* Analytical chemistry is answering the questions:

1. What chemical species are present in a sample?
2. How much of each chemical species are present?

Analytica/Chemistry

Qualitative

 Analysis
Volumetric Analysis

Gravimetric Analysis

Instrumental Analysis

Asst. Lec. ALAA SALMAN AL-LABBAN

1. Qualitative Analysis

* Qualitative Analysis: It deals with the identification of elements, ions or compounds present in the unknown sample.

2. Quantitative Analysis

* Quantitative Analysis: It deals with the determination of the quantity of one or more compounds of the sample.

Types of Quantitative Analysis

1. Volumetric Analysis

* Base up on the measurement of the volume of the standard reagent to find the quantity of unknown substance.

2. Gravimetric Analysis

* Base up on the measurement of the weight of a precipitate to find the quantity of unknown substance.

3. Instrumental Analysis

* Is a field of analytical chemistry that investigates analytes using scientific instruments.

Solutions

\& Solution: is homogenous mixture formed by dissolving one or more solute present in solvent.

Types of Solutions

* It can be divided into two types:

1. Depend on the particle size of solute in solvent.
2. Depend on the concentration of solute in solvent.

1. Depend on the particle size of solute in solvent

1. True solutions.

2. Suspended solutions.
3. Colloidal solutions.

Types of solutions		
True solution	Colloidal solution	Suspension
Pavticles size less than $10^{-7} \mathrm{~cm}$	Paveicles size $10^{-7} \text { to } 10^{-5} \mathrm{~cm}$	Paveicles size greater than 10^{-5}
$\begin{aligned} & \because: \\ & \because \end{aligned}$	$\because 0 \cdot 0$	0

2. Depend on the concentration of solute in solvent

1. Unsaturated solutions

2. Saturated solutions.
3. Super Saturated solutions.

Methods of expressing concentration of solutions

1. Formality (F).
2. Molarity (M).
3. Normality (N).
4. Percent composition (\%).
5. Parts per million (ppm).
6. Molality (m).

1. Formality (F)

* Defined as the number of formula weight of substance dissolved per liter of the solution.
* Unit of formality is (F).

$$
F=\frac{W t}{F . w t} \times \frac{1000}{\text { Vml }}
$$

2. Molarity (M)

* A concentration that is defined as the number of moles per Liter of solution (solvent). * Unit of molarity is (M) or (mol / L).

$$
\mathrm{M}=\frac{\mathrm{Wt}}{\mathrm{M} \cdot \mathbf{W t}} \times \frac{1000}{\mathrm{Vml}}
$$

3. Normality (N)

* A concentration that is defined as number of equivalent per Liter of solution (solvent).
* Unit of normality is (N).

$$
N=\frac{W t}{E q . \text { wt }} \times \frac{1000}{\text { Vml }}
$$

4. Percentage Compositions

There are three ways:
A. Weight / Weight W/W\%
B. Volume / Volume VIV\%
C. Weight / Volume WIV\%

A. Weight / Weight W/W\%

Weight / Weight WIW\% : grams of substances per 100 g of sample.

$\frac{\mathbf{W}}{\mathbf{W}} \%=\frac{\mathbf{W t} \text { of solute in } \mathbf{g}}{\mathbf{W t} \text { of solution in } \mathbf{g}} \times \mathbf{1 0 0}$

B. Volume / Volume VIV\%

* Volume / Volume VIV\% : ml of solute within 100 ml of solvent for dilute solution.

$$
\frac{\mathrm{V}}{\mathrm{~V}} \%=\frac{\mathrm{V} \text { of solute in } \mathrm{ml}}{\mathrm{~V} \text { of solution in } \mathrm{ml}} \times 100
$$

C. Weight / Volume WIV\%

Weight / Volume W/V\% : gram of solute per

 100 ml of solvent.
$\frac{\mathbf{W}}{\mathbf{V}} \%=\frac{\text { Wt of solute in } \mathbf{g}}{\mathbf{V} \text { of solution in } \mathbf{~ m l}} \times \mathbf{1 0 0}$

5. Part Per Million (ppm)

* When the amount of solute present in the solution in very less quantities, the concentration expressed as part per million (ppm).
* Defined as one part of solute in million parts of solution.

$$
\mathrm{ppm}=\frac{\mathrm{W} \text { of solute in } \mathrm{mg}}{\mathrm{~V} \text { of solution in litter }}
$$

6. Molality (m)

* Number of moles of solute (n) per (Kg) of solvent this concentration is used for very specified preparation. Unit of molality is $\mathbf{m}=\mathrm{mol} / \mathrm{Kg}$

$$
\text { Molality }=\frac{\text { no. moles of solute }}{1000 \mathrm{gm} \text { of solvent }}
$$

$$
\text { No. Moles }=\frac{\text { Wt of matter }}{\text { M. Wt of matter }}
$$

