AL-Mustaqbal University College Department of Medical Physics The Second Stage Thermodynamics and Heat Dr. Rusul Abdul Ameer

كلية المستقبل الجامعة قسم الغيزياء الطبية المرحلة الثانية الديناميكيا الحرارية

Lecture .6

Special cases of the equation $\Delta \mathbf{H} = \Delta \mathbf{E} + \mathbf{P} \Delta \mathbf{V}$

1) Reactions involving gaseous substances

Where $(\mathbf{n}_R \neq \mathbf{n}_P)$ and in which the volume changes are large and cannot be neglected, and by imposing the behavior of gases ideally,

$$PV_{R} = n_{R} RT$$
$$PV_{P} = n_{p} RT$$

Where :

 n_R : Number of gas moles produced.

 $\mathbf{n}_{\mathbf{R}}$: Number of gas moles interacting (At constant pressure and temperature).

T : Temperature in kelvin (K).

 \mathbf{R} : The general Fixed of gases (8.314 J / K. Mole).

From the equation: $\Delta \mathbf{H} = \Delta \mathbf{E} + \mathbf{P} \Delta \mathbf{V}$

We will modify $P\Delta V$ as follows:

 $P\Delta V = P (V_P - V_R)$ $P\Delta V = P V_P - P V_R$ $P \Delta V = n_P RT - n_R RT$ $P \Delta V = RT (n_P - n_R)$ $P \Delta V = \Delta n_{(g)} RT$

Compensate the last equation in equation $\Delta H = \Delta E + P \Delta V$, therefore we get on :

$$\Delta \mathbf{H} = \Delta \mathbf{E} + \Delta \mathbf{n}_{(g)} \mathbf{R} \mathbf{T}$$

2) Reactions in which interacting and resulting gases are involved)

Where $(\mathbf{n}_{\mathbf{P}} = \mathbf{n}_{\mathbf{R}})$ and therefore the value of $\Delta \mathbf{n} = 0$

Then the equation: $\Delta \mathbf{H} = \Delta \mathbf{E} + \mathbf{P} \Delta \mathbf{V}$ From the equation: $\Delta \mathbf{H} = \Delta \mathbf{E} + \Delta \mathbf{n} \ \mathbf{RT}$ Since $\Delta \mathbf{n} = 0$ $\therefore \Delta \mathbf{H} = \Delta \mathbf{E}$

3) Reactions involving solid or liquid substances only (not involving gas substances):

In which the volume changes are small $\Delta V=0$ and therefore can be neglected, then

the equation: $\Delta \mathbf{H} = \Delta \mathbf{E} + \mathbf{P} \Delta \mathbf{V}$

since

$$\Delta \mathbf{n} = 0$$

$$\therefore \Delta \mathbf{H} = \Delta \mathbf{E}$$

Example :

Calculating the change in the internal energy of the reaction:

 $Zn_{(s)} + H_2 SO_{4(L)} ZnSO_{4(aq)} + H_{2(g)}$

If the released heat is 34200 Cal of zinc at (17 $^{\circ}$ C)

Note that (R = 2 Cal / mole .K)

Solution :

 $\Delta n = 1 - 0 = 1$

Applying the relationship $\Delta H = \Delta E + \Delta n RT$

 $\Delta \mathbf{E} = \Delta \mathbf{H} - \mathbf{n} \ \mathbf{R} \mathbf{T}$

 $\Delta E = [(-34200 \text{ Cal}) - (1x \ 2 \ x \ (17 + 273)]$

 $\Delta E = -34780 \text{ Cal}$

Example :

If the change in internal energy is equal to -333kJ for the following interaction:

 $NH_4Cl_{(aq)} + NaNO_2_{(aq)} \rightarrow N_2_{(g)} + 2H_2O_{(L)} + NaCl_{(aq)}$

When one mole of N_2 is produced, if the production of one mole of nitrogen makes the system increase by 22.4 L, at one air pressure. Calculate the change in the Enthalpy interaction?

Solution :

 $\Delta E = -333 \text{ X}10^{3} \text{ J}, \qquad P = 1 \text{ atom }, \Delta V = 22.4 \text{ L}$ $P \Delta V = 1 \text{ atom } \text{X} 22.4 \text{ L} = 22.4 \text{ L}. \text{ atom}$ 22.4 L. atom X 101.325 J / L. atom = 2269.68 JApplying the relationship: $\Delta H = \Delta E + P\Delta V$ $\Delta H = [(-333 \text{ x}10^{3}) + (1 \text{ x}22.4) 101.325]$ $\Delta H = -330730.88 \text{ J}$ $\Delta H = -330.73 \text{ kJ}$

Example :

If the heat associated with combustion of one molten gasoline is equal to(-3264.3) kJ at a fixed volume and temperature (298K), Calculate the change in the enthalpy of the reaction (Δ H), if you know that gasoline burns with oxygen equation: C₆H_{6 (L)} + 7.5 O_{2 (g)} \rightarrow 6CO₂ (g) + 3H₂O (L)

Note that the value of ($R = 8.314 \text{ J} / \text{mole} \cdot \text{K}$).

Solution :

The amount of heat at a fixed volume reflects the internal energy:

$$\begin{split} q_v &= \Delta E \\ \Delta E &= -3264.3 \ x \ 10^3 \ J \\ \Delta n &= n_p - n_R = 6 - 7.5 = -1.5 \\ \Delta H &= \Delta E + \Delta n \ RT \\ \Delta H &= (-3264.3 \ x 10^3 \ J \) + \ (-1.5 \ mole \ x \ 8.314 \ J \ / \ K. \ mole \ x \ 298 \ K) \\ \Delta H &= -3268016.358 \ J \\ \Delta H &= -3268.02 \ k J \end{split}$$