

بعض أدوات السيطرة على الجودة

هنالك العديد من الأدوات الأخـرى المستخدمة في الــيطرة عـلى الجـودة
وهي":
أ-المدرجات التكرارية: Frequency Histograms
ان الغرض من المــرجات التكراريـة هـو أنهـا تعــد وسـيلة لتحديــد المـيـل المركزي. وتحديد التغير وتحديد شكل التوزيع حيث يتم من خلالما تحديد مقدار التشتـت في العملية الإنتاجية، فهي عبارة عن وسيلة بيانية للتوزيعات التكرارية

يقصد بها التعرف الى الشكل العام لمذه التوزيعات، واتخاذ قـرار فـيـيا اذا كانـت العملية تحت السيطرة أولا وينعكس في هذه التوزيعات ملخصَ للنتائج المقيسة طوال مدة العمل وتعد أداة رئيسة للاحصاء الوصفي (Descriptive Statistics) الذي يمكن من خلاله اعطاء صورة واضحة ومرئيـة لــدراء الإنـــاج تـؤهلهم للزيد من الفهم للتغيرات الحاصلة في خلال الإنتاج بطريقة بـسيطة. ويـستخدم المدرج التكر اري غالباً لبيان مدى ملاءمة العملية للمستهلك إذ بوسـاطته يـتم قياس العملية للتأكد منها، وهذا يتطلب اجراء بجموعة مراقبـات وتـسجيلات لعدة مرات للعملية ومن ثم مقارنتها مع الأهداف القياسية أو مـع مواصـفات العملية المطلوبة.

لغرض إعداد المدرج التكراري لابد من اتباع الخطوات الآتية: / أ) جمع قيم البيانات المطلوب رسمها.
/ ب) تحديد المدي (Range) للمعلومات، وذلـك مـن خــلال طـرح القيمـة الأعلى من القيمة الدنيا (المدى = القيمة الأعلى - القيمة الدنيا) . /ج) تحديد عدحمح الفئات (Number of classes) إذ يتم حـساب عــدد الفئـات على أساس عدد البيانات. ويمكن احتساب عدد الفئات من خلال تطبيق القانون الآتي: $M=2.5^{4} \sqrt{n}$.

حيث أن:
:M
n: حجم العينة

د) تحديد فترة الفئة (Class Interval) وتساوي حاصل قيمة المدى المحسوب

هـ) رسم ارتفاع كل فئة باستخدام المحور الصادي (Y) وبحـسب التكــرار (لكل "فئة في ضمنها قــيم البيانـات الخناصـة بهـا، علـماً بــأن عرض الفئات (Width of Class) متساوي ويحدد على المحور (X)، الذي يمثل مراكز الفئات.
(و) ولإيجاد الوسط الحسابي (Mean) لقيم المدرج التكراري لإلابد من تطبيق
المعادلة الآتية: X=a+hE1

يمثل الوسط الحسابي لقيم البيانات المجموعة.
a: يمثل القيمة الممثلة للفئة الصفرية.
h يمثل عرض الفئة أو فترتها.
 على حجم العينة أو عدد البيانات المطلوب رسمها.

تُّ أْما الانحراف المعياري (Standard Deviation) فـيمكن إيبـاده مـن خــلال

$$
\delta=h \sqrt{E_{2}-(E 1)^{2}}
$$

8: يمثل الانحراف المعياري لثيمة البيانات المجموعة.

h: يمثل طول الفئة وفترتها.

E2: يمثل حاصل قسمة ججموع (النكرار(F2)× ومربع الرتـب
حجم العينة أو عدد البيانات الطلوب رسمها.
: El العينة أو عدد البيانات المطلوب رسمها.

ولتحديد طول الفئة لابد من معرفة عدد النئات بحسب القانون الآتي:
$M=2.5^{4} \sqrt{500}=11.82$

Quality Function Deployment (QFD)

أنـشأت شركتـي برجـستون لإطــارات وميسيوبيـشي للـصناعات الثقيلـة هذه الإدارة في أواخر الستينيات وأوائـل الـسبعينيات، وذلـك لغـرض اجـراء

ج) مدخل تاكوشي: Tayuchi Approah
خــلال الخمـسينات وبدايـة الــستينيات قــام الـدكتور (جبنجـي تــاكوشي)
بتطــوير مدخلـه المعـروف بمــدخل تـاكوشي للجـودة (الذي أدى إلى منحه ارفع جائزة في اليابان في بجال الجودة في عام 1962م وهي جائزة ديمنـغ (Deming Award) أن مـدخل
 (وتصميم العملية) والبيئة الخارجية، لان قياس الجودة يكون بشكل خسارة كليـة أو ربح كلي للمجتمع لمذا فان هذا المدخل يقدم الرؤية الجديدة إلى المواصفات، فالمواصفات هي المستهدفات والتفاوتات، والمستهدفات تمثل القيم المـثلي التي يتوقع ان يَتقها الإنتاج، والتفاوتات هي الانحر افات المقبولة عن القيم المثلى.

د) تحليل باريتو: Pareto Analysis
يكمل غخطط باريتو إسم العالم الإيطـالي ألفريـدو بــاريتو (1824-1923) الذي بيّن أن 85٪ من الثـروة تقـع بأيـدي 15٪ مـن الــسكان فقـط، وأعقبه
(جوزيف جوران) 1950 عندما لا حظ في بجالات متعددة أن أعداداً ببيرة من مشاكل الجودة كان ورائها أسباب ضـئلـة تخ ص مو اصـفات العمليـة في حـين أن الأعداد الكبيرة من المواصفات العمليــة لا تـسبب إلا أعـــداداً صـغيرة مـن
 والكثيرة غير المهوة" فالقلة المؤثرة هي التي تؤثر بـشكل واضــح بـالكثرة غــري المؤثرة من المخر جات المتكر رة بشكل كبير وتؤدي إلى اغلب النتائج، وتتم هـذه العملية من خلال تحديد المشاكل المتعلقة بالحو دة وأسـبابها وأنواعهـا وترتيهِها $\underbrace{\text { ألمـا }}$ وفقاً إلى أهميتها ومن ثُم يمكن استخدام ذلك لتسليط الضوء على المناطق التي تتطلب اتخاذ قرار التحسين.

هـ) خرائط العملية: Process Charts
توضح هذه الخر ائط بالدرجة الأساس المخطط الإنسِيابي الذي يتم بمو جبـه تحليل العملية والذي يبين المدخلات والعمليات والمخرجــــت مـن اجـل فهـم الأحداث وتحديد أماكن الفحص والنقل والتوقف.

و- غخطط السبب والنتيجة: Cause and Effect Diagram

تطرق إلى غططط السبب والنتيجة العديد من البـاحثين، وبتـسميات غتتلفـة فمنهم من أطلق عليه غنطط السـبـ والنتيجـة ومـنهم مـن أطلـق عليـه عظـ السسمكة (Fish Bone Chart) ومـنهـم مــن أطلـق عليـه تحليـل عظـم الـسمكة (Fish Bone Analysis)
(Ishikawa Diagram)، وعلى الرغم من اختلاف التسميات إلا انـهـ لم يختلـف
 للمشُكلة ومن ثم استنباط إلتفاصيل وهو يعد مـن المخططـات غـير التقليديـة مقارنة بأدوات السيطرة على الجودة الاعتيادية والتقليدية، إذ يمكن أن تفيد دنه
 مروراً بطرائق الصيانة المو جودة في المنظمة.
 والنتيجة زيادة على البطاقات، ويعد هذا النوع من غخططـات الـسبب والنتيجـة المتطورة واسعة الاستعمال في المنظطات اليابانية. وهناك خطوات أساس لابد من اتباعها في انشاء هذا المخطط هي: - تحديد أية مواصفات للجودة نريد أن نتحقق منها أي بيان مشكلة الجودة. - حدد الاسباب المحتملة وراء هذه المشكلة ، وبعدها ا اجمع معلو مـات لاثبـات الاعتلحدية بين السبب والنيجة.
(*) CEDAC: Cause and Effect Diagram with Addition of cards
ويعرف (CEDAS) بانه عبارة عـن عربـة يقودهـا عامـل في المـصنع إذ يستم بجـــع آراء العـاملين

 ومعرنة معلوماتية كمية حول المثككلة (Bagchi, 1994,P:125).

- لككل عامل رئيسن تم تحديده نحاول تحديد الاسباب الفرعية عن طريق توجيه الاسئة التكرارية والنظامية. الخـط
- نكمل العمل على المخطط حتى يكتوي على الأسباب الواجب احتواءها. ز- أشُال الإنتشار: Scatter Diagram

تعد أشكال الانتشار من أبرز الأساليب التي تستخدم لغرض السيطرة عــلى
الإنتاج وفي بجال السيطرة على الجودة بشكل خاص. وهـي عبـارة عـن تطبيـق
للفكرة البسيطة والخاصة بتوضيح العلاقة السببية بين متغيرين أحـدهما يكـون متغيراً تابعاً ويمثل المحور الصادي والآخر يكون متغيراً مستقلاً ويمثل المحور السيني ولقياس مدى الارتباط في غخططات التبعثر هناك طريقتين هما:

الطريقة الأولى: هي حساب معامل الارتباط Coefficient of Correlation.
الطريقة الثانية: تعتمد على ورقة الاحتمالية Binomial Probability Paper:

