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Time-dependent Schrodinger equation

At the same time that Schrddinger proposed his time-independent equation to
describe the stationary states, he also proposed a time-dependent equation to describe
how a system changes from one state to another. By replacing the energy E in
Schrodinger’s equation with a time-derivative operator, he generalized his wave
equation to determine the time variation of the wave function as well as its spatial

variation. The time-dependent Schrodinger equation reads
special composition for article "Quantum Mechanics™: Schrodinger equation

The quantity i is the square root of —1. The function ¥ varies with time t as well as

with position x, y, z. For a system with constant energy, E, ¥ has the form
special composition for article "Quantum Mechanics"

where exp stands for the exponential function, and the time-dependent Schrdédinger

equation reduces to the time-independent form.

The probability of a transition between one atomic stationary state and some other
state can be calculated with the aid of the time-dependent Schrodinger equation. For
example, an atom may change spontaneously from one state to another state with less
energy, emitting the difference in energy as a photon with a frequency given by the

Bohr relation.




If electromagnetic radiation is applied to a set of atoms and if the frequency of the
radiation matches the energy difference between two stationary states, transitions can
be stimulated. In a stimulated transition, the energy of the atom may increase—i.e.,
the atom may absorb a photon from the radiation—or the energy of the atom may
decrease, with the emission of a photon, which adds to the energy of the radiation.
Such stimulated emission processes form the basic mechanism for the operation of
lasers. The probability of a transition from one state to another depends on the values
of the I, m, ms quantum numbers of the initial and final states. For most values, the
transition probability is effectively zero. However, for certain changes in the quantum
numbers, summarized as selection rules, there is a finite probability. For example,
according to one important selection rule, the | value changes by unity because
photons have a spin of 1. The selection rules for radiation relate to the angular
momentum properties of the stationary states. The absorbed or emitted photon has its
own angular momentum, and the selection rules reflect the conservation of angular

momentum between the atoms and the radiation.
Axiomatic approach

Although the two Schrddinger equations form an important part of quantum
mechanics, it is possible to present the subject in a more general way. Dirac gave an
elegant exposition of an axiomatic approach based on observables and states in a
classic textbook entitled The Principles of Quantum Mechanics. (The book,

published in 1930, is still in print.)




An observable is anything that can be measured—energy, position, a component of
angular momentum, and so forth. Every observable has a set of states, each state
being represented by an algebraic function. With each state is associated a number
that gives the result of a measurement of the observable. Consider an observable with
N states, denoted by y1, y2, .. ., yN, and corresponding measurement values al, a2,
. . ., aN. A physical system—e.g., an atom in a particular state—is represented by a
wave function W, which can be expressed as a linear combination, or mixture, of the

states of the observable. Thus, the ¥ may be written as
special composition for article "Quantum Mechanics"

For a given P, the quantities c1, c2, etc., are a set of numbers that can be calculated.
In general, the numbers are complex, but, in the present discussion, they are assumed

to be real numbers.




Solving the TDSE

w & ‘~P(x t)
2m
We assume that the solution is separable. i.e. \P(X,l ) = l//(x) f(t)

R f0dy(x) f <f>
2m o’

Divide by W(x,7) = y(x) f ()

o r oyly) ey i FO)
This yields 2ml//(x) 52 +U(x)_f(t) S

U, =in ) aq’(x )

Uy (x)f (0) =ihy(x)

Left side only depends on x, right only depends on z.

Separating the equations

. hZ azl//(x)+U(x)=iw
2my(x) o f(t) ot

To be true for all times and positions we require that both sides
equal a constant. Call it E.

df(t) _E

So dt ih f (1) (Ordinary differential equation!)

Which has a solution| f () = et

If we identify £ =ho .

thE!Il f(t) — —iwt
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General characteristics of TISE solutions

LAV, )= )
o:// =2m
?_h—z(E Ulx))w

When E > U(x) (Le. K> 0)

2
0 %2 = —cnst. Xy
Ox

In this case the wave function always curves towards the axis (oscillations).

When E <U(x) (Le. K<0)

5‘%2 = Cnst. Xy

In this case the wave function always curves away from the axis.

To avoid diverging it must asymptote to the axis for large absolute value of x.




Solving the Time-independent Schrodinger
Equation

[) Write the SE with the appropriate potential in all
regions of space.

2) Solve the resulting differential equation in each
region of space.

3)  Apply boundary conditions (this usually determines
the allowed energies).

4)  For discontinuous potentials - require continuity of
the wave function, and usually its derivative.

5)  Evaluate all undetermined constants.

6) Normalize - the probability of finding the particle
somewhere should be one.

7)  Discard any solutions with mfinite probabilities
(they are non-physical).

8) Calculate the expectation values of the quantities of
Inferest.




Particle in a Box

With Ux)=0if 0<x< L t
andU(X)ZOOifx{()orifx>L N\

TN
Inside the box we have u-g_‘ T

—ﬁ%-Ew{x) azgo(x)_ Ew(x)--kzl//(x)

m ox’ o’

The equation 1s that of a harmonic oscillator with solutions
y(x)= Asin(ke) + Boog( k).

We match these solutions within the well to the Boundary Condition that the
wavefunction must vanish a ) and at L. These imply that B=0 and that the

constant k = "7 | with n an integer.




Thus £, :nﬁ/L:xfszn /h withn = 1,2,3,..

Applying the normalization condition on the solutions yields the eigenstates:

(nrx
;//n(x):,ﬂ%sm( I ] wheren=1, 2, 3, ...

) . Kn: n’rth?
And the corresponding energies are £, = - P
m

Any linear combination of these solutions is also a solution. Including the
time dependence we have the general solution:

‘P(x,f) _ ZC” Wn(x)e—iEnr.fh

1
The c are the coefficients that determine the admixture of the different states.

w,(x) = «,f% Siﬂ(m;x) wheren=1, 2, 3, ...

It can be easily shown that the i, form a complete orthonormal set of
functions on the interval between x = () and L (Fourier’s theorem).

1.c. I v, (x) v, (x)dx =0, (Orthonormal)




Any arbitrary function can be written as a linear combination of these eigenfunctions.
f(x) = Z Cnl//n (‘x) (Complete)
n

One may use Fourier’s trick to determine the coefficients.

[, (30 fde =Y, [, () v, (0

n=|
o0
= Z Cn 5mn = Cm

n=l|

Once the coefficients are determined (usually from the initial
conditions) the general solution of the TDSE 1s known.

l.P(x’ t) = Z Cn l//n (x)e_iE"”’h




