
At the same time that Schrödinger proposed his time-independent equation to
的
an observable is anything that can be measured - energy, position, a component of

$$
\begin{aligned}
& \text { Solving the TDSE } \\
& -\frac{\hbar^{2}{ }^{2} \Psi(x, t)}{2 m} \frac{\partial(x)}{\partial x^{2}}+U(x) \Psi(x, t)=i \hbar \frac{\partial(x, t)}{\partial t}
\end{aligned}
$$

We assume that the solution is separable. i.e. $\Psi(x, t)=\psi(x) f(t)$

$$
-\frac{\hbar^{2}}{2 m} \frac{f(t) \partial^{2} \psi(x)}{\delta x^{2}}+U(x) \psi(x) f(t)=i \hbar \psi(x) \frac{\delta f(t)}{\delta t}
$$

Divide by $\Psi(x, t)=\psi(x) f(t)$
This yields $-\frac{\hbar^{2}}{2 m \psi(x)} \frac{\partial^{2} \psi(x)}{\delta x^{2}}+U(x)=\frac{i \hbar}{f(t)} \frac{\delta f(t)}{\delta t}$.

Left side only depends on x, right only depends on t.

$$
\begin{aligned}
& \text { Separating the equations } \\
& -\frac{\hbar^{2}}{2 m \mu(x)} \frac{\partial^{2} \psi(x)}{\delta x^{2}}+U(x)=\frac{i \hbar}{f(t)} \frac{\delta f(t)}{\delta t}
\end{aligned}
$$

To be true for all times and positions we require that both sides equal a constant. Call it E.

So $\frac{d f(t)}{d t}=\frac{E}{i \hbar} f(t) \quad$ (Ordinary differential equation!)
Which has a solution $f(t)=e^{-i E t / \hbar}$.
If we identify $E=\hbar \omega$.
then $f(t)=e^{-i \omega t}$.
And for the time dependent part

$$
-\frac{\hbar^{2}}{2 m \psi(x)} \frac{\partial^{2} \psi(x)}{\dot{\alpha}^{2}}+U(x)=\frac{i \hbar}{f(t)} \frac{\delta(t)}{\delta t}
$$

ψ must satisfy the TISE

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+U(x) \psi(x)=E \psi(x)
$$

Applying the normalization condition on the solutions yields the eigenstates:
ГГГ
One may use Fourier's trick to determine the coefficients.

$$
\begin{aligned}
& \int \psi_{m}(x)^{*} f(x) d x=\sum_{n=1}^{\infty} c_{n} \int \psi_{m}(x)^{*} \psi_{n}(x) d x \\
& =\sum_{n=1}^{\infty} c_{n} \delta_{m n}=c_{m}
\end{aligned}
$$

Once the coefficients are determined (usually from the initial conditions) the general solution of the TDSE is known.

$$
\Psi(x, t)=\sum_{n} c_{n} \psi_{n}(x) e^{-i E_{n} / \hbar}
$$

