INTERNATIONAL EDITION

THE 80x86 IBM PC AND
CompATIBLE COMPUTERS
(VoLumes | &)

ASSEMBLY LANGUAGE,

DESIGN, AND INTERFACING
4th Edition

2 T A

\

08 » -
i L / - i'i':‘

Muhammad Ali Mazidi
Janice Gillispie Mazidi

Origin and definition of the segment

A segment is an area of memory that includes up to 64K bytes and begins
on an address evenly divisible by 16 (such an address ends in 0H). The segment
size of 64K bytes came about because the 8085 microprocessor could address a
maximum of 64K bytes of physical memory since it had only 16 pins for the address
lines (216 =64K). This limitation was carried into the design of the 8088/86 to ensure
compatibility. Whereas in the 8085 there was only 64K bytes of memory for all
code, data, and stack information, in the 8088/86 there can be up to 64K bytes of
memory assigned to each category. Within an Assembly language program, these
categories are called the code segment, data segment, and stack segment. For this
reason, the 8088/86 can only handle a maximum of 64K bytes of code and 64K bytes
of data and 64K bytes of stack at any given time, although it has a range of 1
megabyte of memory because of its 20 address pins (229 = 1 megabyte). How to
move this window of 64K bytes to cover all 1 megabyte of memory is discussed
below, after we discuss logical address and physical address.

Logical address and physical address

In Intel literature concerning the 8086, there are three types of addresses
mentioned frequently: the physical address, the offset address, and the logical
address. The physical address is the 20-bit address that is actually put on the address
pins of the 8086 microprocessor and decoded by the memory interfacing circuitry.
This address can have a range of 00000H to FFFFFH for the 8086 and real-mode
286, 386, and 486 CPUs. This is an actual physical location in RAM or ROM within
the 1 megabyte memory range.’ The offset address is a location within a 64K-byte
segment range. Therefore, an offset address can range from 0000H to FEFFH. The
logical address consists of a segment value and an offset address. The differences
among these addresses and the process of converting from one to another is best
understood in the context of some examples, as shown next.

Code segment

To execute a program, the 8086 cs P

fetches the instructions (opcodes and op- 2ls510l0):19l51F|3

erands) from the code segment. The logi-
cal address of an instruction always
consists of a CS (code segment) and an IP (instruction pointer), shown in CS:IP
format. The physical address for the location of the instruction is generated by
shifting the CS left one hex digit and then adding it to the IP. [P contains the offset
address. The resulting 20-bit address is called the physical address since it is put
on the external physical address bus pins to be decoded by the memory decoding
circuitry. To clarify this important concept, assume values in CS and [P as shown
in the diagram. The offset address is contained in IP; in this case it is 95F3H. The
logical address is CS:IP, or 2500:95F3H. The physical address will be 25000 + 95F3
= 2ESF3H. The physical address of an instruction can be calculated as follows:

1, Start with CS. 2(5]0/(0
2. Shift left CS. 2510100
3.Add IP. STelsTF T3

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS

27

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

The microprocessor will retrieve the instruction from memory locations
starting at 2ESF3. Since IP can have a minimum value of 0000H and a maximum
of FFFFH, the logical address range in this example is 2500:0000 to 2500:FFFF.
This means that the lowest memory location of the code segment above will be
25000H (25000 + 0000) and the highest memory location will be 34FFFH (25000
+ FFFF). What happens if the desired instructions are located beyond these two
limits? The answer is that the value of CS must be changed to access those
instructions. See Example 1-1.

xample 1-
If CS = 24F6H an
(a) The logical address
(b) Th address
and calculate:

(c) The physical address
(d
(e

Colation:
{a) 24F6:634A
{c) 2B2AA (24F60 + 634A)

Logical address vs. physical address in the code segment

In the code segment, CS and IP hold the logical address of the instructions
to be executed. The following Assembly language instructions have been assembled
(translated into machine code) and stored in memory. The three columns show the
logical address of CS:IP, the machine code stored at that address and the correspond-
ing Assembly language code. This information can easily be generated by the
DEBUG program using the Unassemble command.

Logical address Machine language Assembly language
CSIP opcode and operand mnemonics and operand
1132:0100 BO57 MOV AL,57
1132:0102 B686 MOV DH,86
1132:0104 B272 MOV DL, 72
1132:0106 89D1 MOV CX,DX
1132:0108 88C7 MOV BH,AL
1132:010A B39F MOV BL.9F
1132:010C B420 MOV AH,20
1132:010E 01D0 ADD AX.,DX
1132:0110 01D% ADD CX,BX
1132:0112 05351F ADD AX,1F35

The program above shows that the byte at address 1132:0100 contains B0,
which is the opcode for moving a value into register AL, and address 1132:0101
contains the operand (in this case 57) to be moved to AL. Therefore, the instruction
"MOV AL,57" has a machine code of BO57, where B0 is the opcode and 57 is the
operand. Similarly, the machine code B686 is located in memory locations
1132:0102 and 1132:0103 and represents the opcode and the operand for the
instruction "MOV DH,86". The physical address is an actual location within RAM
(or even ROM). The following are the physical addresses and the contents of each
location for the program above. Remember that it is the physical address that 1s put
on the address bus by the 8086 CPU to be decoded by the memory circuitry:

28 CHAPTER 1: THE 80x86 MICROPROCESSOR

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Sticky Note
of DS

MSI-PC
Sticky Note
of DS

MSI-PC
Sticky Note
(F) of IP lower range
(G) of IP upper range

Logical address Physical address Machine code contents

1132:0100 11420 BO
1132:0101 11421 57
1132:0102 11422 B6
1132:0103 11423 86
1132:0104 11424 B2
1132:0105 11425 72
1132:0106 11426 89
1132:0107 11427 D1
1132:0108 11428 88
1132:0109 11429 c7
1132:010A 1142A B3
1132:010B 1142B 9F
1132:010C 1142C B4
1132:010D 1142D 20
1132:010E 1142E o1
1132:010F 1142F DO
1132:0110 11430 01
1132:0111 11431 D9
1132:0112 11432 05
1132:0113 11433 35
1132:0114 11434 1F

Data segment

Assume that a program is being written to add 5 bytes of data, such as 25H,
12H, 15H, 1FH, and 2BH, where each byte represents a person’s daily overtime pay.
One way to add them is as follows:

MOV AL,00H ;initialize AL

ADD AL,25H ;add 25H to AL
ADD AL,12H ;add 12H to AL
ADD AL,16H ;add 15H to AL
ADD AL,IFH ;add 1FH to AL
ADD AL,2BH ;add 2BH to AL

In the program above, the data and code are mixed together in the instruc-
tions. The problem with writing the program this way is that if the data changes,
the code must be searched for every place the data is included, and the data retyped.
For this reason, the idea arose to set aside an area of memory strictly for data. In
80x86 microprocessors, the area of memory set aside for data is called the data
segment, Just as the code segment is associated with CS and IP as its segment
register and offset, the data segment uses register DS and an offset value.

The following demonstrates how data can be stored in the data segment and
the program rewritten so that it can be used for any set of data. Assume that the
offset for the data segment begins at 200H. The data is placed in memory locations:

DS:0200 = 25

DS:0201 =12

DS5:0202 =15

DS:0203 = 1F

DS:0204 = 2B

and the program can be rewritten as follows:

MOV ALD ;clear AL

ADD AL,[0200] ;add the contents of DS:200 to AL
ADD AL,[0201] :add the contents of DS:201 to AL
ADD AL,[0202] :add the contents of DS:202 to AL
ADD AL,[0203] ;add the contents of DS:203 to AL
ADD AL,[0204] ;add the contents of DS:204 to AL

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS

29

Notice that the offset address is enclosed in brackets. The brackets indicate
that the operand represents the address of the data and not the data itself. If the
brackets were not included, as in "MOV AL,0200", the CPU would attempt to move
200 into AL instead of the contents of offset address 200. Keep in mind that there
is one important difference in the format of code for MASM and DEBUG in that
DEBUG assumes that all numbers are in hex (no "H" suffix is required), whereas
MASM assumes that they are in decimal and the "H" must be included for hex data.

This program will run with any set of data. Changing the data has no effect
on the code. Although this program is an improvement over the preceding one, it
can be improved even further. Ifthe data had to be stored at a different offset address,
say 450H, the program would have to be rewritten. One way to solve this problem
would be to use a register to hold the offset address, and before each ADD, to
increment the register to access the next byte. Next a decision must be made as to
which register to use. The 8086/88 allows only the use of registers BX, SI, and DI
as offset registers for the data segment. In other words, while CS uses only the IP
register as an offset, DS uses only BX, D], and SI to hold the offset address of the
data. The term pointer is often used for a register holding an offset address. In the
following example, BX is used as a pointer:

MOV AL,0 -initialize AL

MOV BX,0200H ;BX points to the offset addr of first byte
ADD AL,[BX] ;add the first byte to AL

INC BX ;increment BX to point to the next byte
ADD AL,[BX] ;add the next byte to AL

INC BX ;increment the pointer

ADD AL,BX] ;add the next byte to AL

INC BX sincrement the pointer

ADD AL,[BX] ;add the last byte to AL

The "INC" instruction adds 1 to (increments) its operand. "INC BX"
achieves the same result as "ADD BX,1". For the program above, if the offset
address where data is located is changed, only one instruction will need to be
modified and the rest of the program will be unaffected. Examining the program
above shows that there is a pattern of two instructions being repeated. This leads
to the idea of using a loop to repeat certain instructions. Implementing a loop
requires familiarity with the flag register, discussed later in this chapter.

Logical address and physical address in the data segment

The physical address for data is calculated using the same rules as for the
code segment, That is, the physical address of data is calculated by shifting DS left
one hex digit and adding the offset value, as shown in Examples 1-2, 1-3, and 1-4.

Example 1-2
Assume that DS is 5000 and the offset is 1950. Calculate the physical address of the byte.
Solution: DS : offset

51000 : 19|50

The physical address will be 50000 + 1950 = 51950.

1. Start with DS. 50|00
2. Shift DS left. 51010(0]0
3. Add the offset. 51191510

CHAPTER 1: THE 80x86 MICROPROCESSOR

Example 1-3

If DS = 7FA2H and the offset 1s 438EH,
(a) Calculate the physical address. (b} Calculate the lower range.
(c) Calculate the upper range of the data segment. (d) Show the logical address.

Solution:

(a) 83DAE (7FA20 + 438E) (by 7TFA20 (7FA20 + 0000)
(c) 8FA1F (7FA20 + FFFF) (d) 7TFA2:438E

Example 1-4

Assume that the DS register is 578C. To access a given byte of data at physical memory location
67F66, does the data segment cover the range where the data is located? If not, what changes need to
be made?

Solution:
No, since the range is 578C0 to 678BF, location 67F66 is not included in this range. To access that
byte, DS must be changed so that its range will include that byte.

Little endian convention

Previous examples used 8-bit or 1-byte data. In this case the bytes are stored
one after another in memory. What happens when 16-bit data is used? For example:

MOV AX,35F3H :load 35F3H into AX
MOV [1500],AX ;copy the contents of AX to offset 1500H

In cases like this, the low byte goes to the low memory location and the
high byte goes to the high memory address. In the example above, memory location
DS:1500 contains F3H and memory location DS:1501 contains 35H.

DS:1500 = F3 DS5:1501 = 35

This convention is called little endian versus big endian. The origin of the
terms big endian and little endian is from a Gulliver 5 Travels story about how an
egg should be opened: from the little end or the big end. In the big endian method,
the high byte goes to the low address, whereas in the little endian method, the high
byte goes to the high address and the low byte to the low address. See Example 1-5.
All Intel microprocessors and many minicomputers, notably the Digital VAX, use
the little endian convention. Motorola microprocessors (used in the Macintosh),

Example 1-5

Assume memory locations with the following contents: DS:6826 = 48 and DS:6827 = 22.
Show the contents of register BX in the instruction "MOV BX,[6826]".

Solution:

According to the little endian convention used in all 80x86 microprocessors, register BL should
contain the value from the low offset address 6826 and register BH the value from offset address
6827, giving BL. = 48H and BH = 22H.

BH BL
DS:6826 = 48
DS:6827 = 22 22 |48

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS 31

	Home

	Contents

	Preface

	0 Introduction to Computing

	0.1 Numbering and Coding Systems

	0.2 Inside the Computer

	0.3 Brief History of the CPU

	Answers to Review Questions

	1 The 80x86 Microprocessor

	1.1 Brief History of the 80x86 Family

	1.2 Inside the 8088/8086

	1.3 Introduction to Assembly Programming

	1.4 Introduction to Program Segments

	1.5 More about Segments in the 80x86

	1.6 80x86 Addressing Modes

	Answers to Review Questions

	2 Assembly Language Programming

	2.1 Directives and a simple Program

	2.2 Assemble, Link, and Run a Program

	2.3 More Sample Programs

	2.4 Control Transfer Instructions

	2.5 Data Types and Data Definitions

	2.6 Full Segment Definition

	2.7
Exe vs. COM Files
	Answers to Review Questions

	3 Arithmetic and Logic Instructions and Programs

	3.1 Unsigned Addition and Subtraction

	3.2 Unsigned Multiplication and Division

	3.3 Logic Instructions and Sample Programs

	3.4 BCD and ASCII Operands and Instructions

	3.5 Rotate Instructions

	3.6 Bitwise Operation in the C Language

	Answers to Review Questions

	4 BIOS and DOS Programming in Assembly and C

	4.1 BIOS INT 10H Programming

	4.2 DOS INTERRUPT 21H

	4.3 INT 16H Keyboard Programming

	4.4 Interrupt Programming with C

	Answers to Review Questions

	5 Macros and the Mouse

	5.1 What is a Macro and how is it used ?

	5.2 Mouse Programming with Interrupt 33H

	Answers to Review Questions

	6 Signed Numbers, Strings, and Tables

	6.1 Signed Number Arithmetic Operations

	6.2 String and Table Operations

	Answers to Review Questions

	7 Modules: Modular and C Programing

	7.1 Writing and Linking Modules

	7.2 Some very useful Modules

	7.3 Passing Parameters among Modules

	7.4 Combining Assembly Language and C Programs

	Answers to Review Questions

	8 32-Bit Programming for 386 and 486 Machines

	8.1 80386/80486 Machines in Real Mode

	8.2 Some Simple 386/486 Programs

	8.3 80x86 Performance Comparison

	Answers to Review Questions

	9 8088, 80286 Microprocesors and ISA Bus

	9.1 8088 Microprocessor

	9.2 8284 and 8288 Supporting Chips

	9.3 8-Bit Section of ISA Bus

	9.4 80286 Microprocessor

	9.5 16-Bit ISA Bus

	Answers to Review Questions

	10 Memory and Memory Interfacing

	10.1 Semiconductor Memory Fundamentals

	10.2 Memory Address Decoding

	10.3 IBM PC Memory Map

	10.4 Data Integrity in RAM and ROM

	10.5 16-Bit Memory Interfacing

	10.6 ISA Bus Memory Interfacing

	Answers to Review Questions

	11 I/O and the 8255; ISA Bus Interfacing

	11.1 8088 Input/Output Instructions

	11.2 I/O Address Decoding and Design

	11.3 I/O Address Map of X86 PCs

	11.4 8255 PPI Chip

	11.5 PC Interface Trainer and Bus Extender

	11.6 I/O Programming with C/C++ and VB

	11.7 8-Bit and 16-Bit I/O Timing in ISA Bus

	Answers to Review Questions

	12 Interfacing to the PC: LCD, Motor,
ADC, and Sensor
	12.1 Interfacing an LCD to the PC

	12.2 Interfacing a Stepper Motor to the PC

	12.3 Interfacing DAC to the PC

	12.4 Interfacing ADC and Sensors to the PC

	Answers to Review Questions

	13 8253/54 Timer and Music

	13.1 8253/54 Timer Description and Initialization

	13.2 IBM PC 8253/54 Timer Connections and Programming

	13.3 Generating Music on the IBM PC

	13.4 Shape of 8253/54 Outputs

	Answers to Review Questions

	14 Interrupts and the 8259 Chip

	14.1 8088/86 Interrupts

	14.2 IBM PC and MS DOS Assignment of Interrupts

	14.3 8259 Programmable Interrupt Controller

	14.4 Use of the 8259 Chip in the IBM PC/XT

	14.5 Interrupts on 80286 and higher 80x86 PCs

	Answers to Review Questions

	15 Direct Memory Accessing; The 8237 DMA Chip

	15.1 Concept of DMA

	15.2 8237 DMA Chip Programming

	15.3 8237 DMA Interfacing in the IBM PC/XT

	15.4 Refreshing DRAM Using Channel 0 of the 8237

	15.5 DMA in 80x86-based PC AT-Type Computers

	Answers to Review Questions

	16 Video and Video Adapters

	16.1 Principles of Monitors and Video Adapters

	16.2 Video Adapters and Text Mode Programming

	16.3 Text Mode Programming using INT 10H

	16.4 Graphics and Graphics Programming

	Answers to Review Questions

	17 Serial Data Communication and the 16450/8250/51 Chips

	17.1 Basics of Serial Communication

	17.2 Accessing IBM PC COM Ports Using DOS and BIOS

	17.3 Interfacing the NS8250/16450 UART in the IBM PC

	17.4 Intel 8251 USART and Synchronous Communication

	Answers to Review Questions

	18 Keyboard and Printer Interfacing

	18.1 Interfacing the Keyboard to the CPU

	18.2 PC Keyboard Interfacing and Programming

	18.3 Printer and Printer Interfacing in the IBM PC

	18.4 Bidirectional Data Bus in Parallel Ports

	Answers to Review Questions

	19 Floppy Disks, Hard Disks, and Files

	19.1 Floppy Disk Organization

	19.2 Hard Disks

	19.3 Disk File Programming

	Answers to Review Questions

	20 The 80x87 Math Coprocessor

	20.1 Math Coprocessor and IEEE Floating-Point

	20.2 80x87 Instructions and Programming

	20.3 8087 Hardware Connections in the IBM PC/XT

	20.4 80x87 Instructions and Timing

	Answers to Review Questions

	21 386 Microprocessor: Real vs. Protected Mode

	21.1 80386 in Real Mode

	21.2 80386: A Hardware View

	21.3 80386 Protected Mode

	Answers to Review Questions

	22
High-Speed Memory Interfacing and Cache
	22.1 Memory Cycle Time of the 80x86

	22.2 Page, Static Column, and Nibble Mode DRAMs

	22.3 Cache Memory

	22.4 EDO, SDRAM, and RAMBUS Memories

	Answers to Review Questions

	23 486, Pentium, Pentium Pro and MMX

	23.1 The 80486 Microprocessor

	23.2 Intel's Pentium

	23.3 RISC Architecture

	23.4 Pentium Pro Processor

	23.5 MMX Technology

	23.6 Processor Identification in Intel x86

	Answers to Review Questions

	24 MS DOS Structure, TSR, and Device Drivers

	24.1 MS DOS Structure

	24.2 TSR and Device Drivers

	Answers to Review Questions

	25 MS DOS Memory Management

	25.1 80x86 PC Memory Terminology and Concepts

	25.2 DOS Memory Management and Loading High

	Answers to Review Questions

	26 IC Technology and System Design Considerations

	26.1 Overview of IC Technology

	26.2 IC Interfacing and System Deisgn Considerations

	26.3 Data Integrity and Error Detection in DRAM

	Answers to Review Questions

	27 ISA, PCI, and USB Buses

	27.1 ISA Buses

	27.2 PCI Local Buses

	27.3 USB Port

	Answers to Review Questions

	28 Programming DOS, BIOS Hardware with C/C++

	28.1 BIOS and DOS Interrupt Programming with C

	28.2 Programming PC Hardware with C/C++

	Answers to Review Questions

	A
Debug Programming
	A.1 Entering and Exiting Debug

	A.2 Examining and Altering teh Contents of Registers

	A.3 Coding and Running Programs in Debug

	A.4 Data Manipulation in Debug

	A.5 Examining the Stack in Debug

	A.6 Examining/Altering the Flag Register in Debug

	A.7 Additional Debug Data Manipulation Commands

	A.8 Loading and Writing Programs

	B 80x86 Instructions and Timing

	B.1 The 8086 Instruction Set

	B.2 Instruction Timing

	C Assembler Directives and Naming Rules

	C.1 80x86 Assembler Directives

	C.2 Rules for Labels and Reserved Names

	D DOS Interrupt 21H and 33H Listing

	D.1 DOS 21H Interrupts

	D.2 Mouse Interrupts 33H

	E BIOS Interrupts

	E.1 INT 10H Video Function Calls

	E.2 INT 11H - Equipment Determination

	E.3 INT 12H - Memory Size Determination

	E.4 INT 14H - Asynchronouos Communication

	E.5 INT 15H - System Services

	E.6 INT 16H - Keyboard

	E.7 INT 17H - Printer

	E.8 INT 1AH - Timer and Real-Timer Clock Services

	F ASCII Codes

	G I/O Address Maps

	G.1 IBM PC AT I/O Address Map

	G.2 IBM PS/2 I/O Address Map

	G.3 ISA Standard I/O Address Ports

	H IBM PC/PS BIOS Data Area

	I Data Sheets

	I.1 NS8250/NS16450 UART Chip

	I.2 Intel's 80486

	I.3 Intel's Pentium

	I.4 Intel Packaging

	References

	Index

