

Biomedical Engineering Engineering Analysis Dr. Shahad Ali Hammood shahad.ali@mustaqbal-college.edu.iq 17/11/2021

Lecture (4)

Example. prove that $\Gamma(n+1) = n \Gamma(n)$

Sol.

$$\Gamma(n+1) = \int_{0}^{\infty} e^{-x} x^{n+1-1} dx = \int_{0}^{\infty} e^{-x} x^{n} dx$$

$$= \left[-x^n e^{-x} + n \int_0^\infty x^{n-1} \cdot e^{-x} \cdot dx \right] = \left[(-\infty e^{-\infty} - 0) + n\Gamma(n) \right] = n\Gamma(n)$$

Multiplication of Two Gamma Functions

1) $\Gamma(n)\Gamma\left(n+\frac{1}{2}\right) = \frac{\sqrt{\pi}\Gamma(2n)}{2^{2n-1}}$ 2) $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(p\pi)}$

Example. Find the solve

$$\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right) = \frac{\pi}{\sin \pi/3} = \frac{2\pi}{\sqrt{3}}$$

$$\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right) = \frac{\sqrt{\pi}\Gamma\frac{1}{2}}{1/\sqrt{2}} = \pi\sqrt{2}$$

Unit Step Function (Heaviside Function)

The unit step function, u(t), is defined as That is, **u** is a function of time **t**, and u has value zero at all points to the left of the origin and is equal to one on the right of the origin. It is defined as:

$$U(t) = \begin{cases} 0, \ t < 0 \\ 1, \ t \ge 0 \end{cases}$$

The displaced unit step function U(t-c) is defined as :

$$U(t-c) = \begin{cases} 0, & t < c \\ 1, & t \ge c \end{cases}$$

Effects of the unit step function

The graph of $f(t) = t^2$ as shown

The graph of $f(t) = u(t-2) \cdot t^2$

For
$$t < 2$$
, $u(t - 2) = 0 \therefore u(t - 2)$. $t^2 = 0$. $t^2 = 0$
 $t \ge 2$, $u(t - 2) = 1 \therefore u(t - 2)$. $t^2 = 1$. $t^2 = t^2$

Example. Sketch the graph of the following functions for t > 0

a) $f(t) = e^{-t}$ b) $f(t) = u(t - c) \cdot e^{-t}$ c) $f(t) = u(t - c) \cdot e^{-(t-c)}$ d) $f(t) = e^{-t} \{u(t - 1) - u(t - 2)\}$

Unit Impulse Function (Dirac delta function)

Dirac delta function (δ function), also known as the **unit impulse** symbol-is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

Properties of the Dirac Delta Function

1.
$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

2.
$$\delta(x) = \frac{d}{dx} u(x)$$
, where $u(x)$ is the unit step function

3.
$$\int_{-\infty}^{\infty} \delta(g(x)) f(x) dx = \delta(g(x)) = \sum_{i} \frac{\delta(x-x_{i})}{|g'(x_{i})|}$$
4.
$$\int_{-\infty}^{\infty} \delta(x) f(x) dx = f(0)$$
5.
$$\int_{-\infty}^{\infty} f(x) \delta(x-x_{o}) dx = f(x_{o})$$

4.
$$\int_{-\infty}^{\infty} \delta(x) f(x) dx = f(0)$$

Example . solve

$$\int_{-\infty}^{\infty} \delta(x^3 - x) e^{-x} dx$$

Sol.

$$g(x) = x^{3} - x, g'(x) = 3x^{2} - 1$$

$$g(x) = x(x^{2} - 1) = x(x + 1)(x - 1), x_{1} = 0, x_{2} = -1, x_{3} = 1$$

$$\delta(x^{3} - x) = \frac{\delta(x)}{|-1|} + \frac{\delta(x + 1)}{|2|} + \frac{\delta(x - 1)}{|2|}$$

$$\int_{-\infty}^{\infty} \delta(x) + \frac{\delta(x + 1)}{2} + \frac{\delta(x - 1)}{2} e^{-x} dx = 1 + \frac{e^{x}}{2} + \frac{e^{-x}}{2}$$

Fourier Transform for Special Function

f(t)	F (ω)	f(t)	F (ω)
e^{-at} , $t \ge 0$	$\frac{1}{i\omega + a}$	$1 - rac{ t }{\mathrm{T}}$, $ t < T$	$\frac{\sin^2(\frac{\omega T}{2})}{\omega^2 T/2}$
t.e ^{-at}	$\frac{1}{(i\omega + a)^2}$		
1	δ(ω)	$e^{-t^2/2}$	$e^{-\omega^2/2}$
$\delta(t)$	1	e	e
$\frac{a}{t^{2+a^2}}$	$e^{-a \omega }$	Sin(at), t > 0	$\frac{a}{(i\omega)^2 + a^2}$
e ^{-a t}	$\frac{a}{\omega^2 + a^2}$	Cos (at), $t > 0$	$\frac{\mathrm{i}\omega}{(\mathrm{i}\omega)^2 + \mathrm{a}^2}$
U(t), $ t < T$ pulse	$\frac{\sin(\omega T)}{\omega}$	Sin (at) $t \in (-\infty, \infty)$	$\frac{1}{2i}[\delta(\omega-a)-\delta(\omega+a)]$
		$\cos(at) t \in (-\infty, \infty)$	$\frac{1}{2}[\delta(\omega-a)+\delta(\omega+a)]$

Example. Find Fourier transform for f(t)=U(t) with |t| < T where U(t) is the unit function

Sol.

$$t < T, t > -T$$

$$F(\omega) = \frac{2}{\sqrt{2\pi}} \int_0^\infty f(t) \cdot \cos(\omega t) \cdot dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_0^T \cos(\omega t) dt = \left[\frac{2}{\sqrt{2\pi}} \sin \frac{\omega t}{\omega}\right]_0^T$$

$$= \frac{2}{\sqrt{2\pi}} \left[\sin \frac{\omega T}{\omega}\right] - 0 = \frac{2}{\sqrt{2\pi}} \sin \frac{\omega T}{\omega}$$

Properties of Fourier Transform

1) Time Shift Law f(t-a) u(t-a) $\longrightarrow (e^{-ia\omega} F(\omega))$

Example. Find Fourier transform for $f(t) = e^{-3t} \cdot u(t-1)$

Sol.
$$e^{-3[(t-1)+1]} \cdot u(t-1) = e^{-3-3(t-1)} \cdot u(t-1)$$

 $e^{-3} \cdot e^{-3(t-1)} \cdot u(t-1)$
 $F(\omega) = e^{-3} \cdot e^{-3i\omega} \cdot \left[\frac{1}{i\omega+3}\right]$

2) Frequency Shift (Modulation)

$$f(t).e^{\pm iat} \to F(\omega \pm a)$$

$$f(t).\cos(at) \to \frac{1}{2} [F(\omega - a) + F(\omega + a)]$$

$$f(t).\sin(at) \to \frac{1}{2i} [F(\omega - a) - F(\omega + a)]$$

Example. Find F.T. for $f(t) = e^{-3|t|} . \cos(4t)$ Sol.

$$e^{-3|t|} \to \frac{3}{\omega^2 + 9}$$

$$F(\omega) = \frac{1}{2} \left[\frac{3}{(\omega - 4)^2 + 9} + \frac{3}{(\omega + 4)^2 + 9} \right]$$

٥

Example. Find F.T. for $f(t) = U(t) \cdot \sin(5t)$

Sol.

$$U(t) \rightarrow \frac{\sin(\omega T)}{\omega}$$
$$U(t).\sin(5t) \rightarrow \frac{1}{2i} \left[\frac{\sin((\omega - 5)T)}{(\omega - 5)} - \frac{\sin((\omega + 5)T)}{(\omega + 5)} \right]$$

3) Derivative in time domain

$$\begin{split} & \text{if } f(t) \to F(\omega) \\ & \frac{df(t)}{dt} \to (i\omega)F(\omega) \\ & \frac{d^2f(t)}{dt^2} \to (i\omega)^2 \ F(\omega) \end{split}$$

Example. Find F.T. for
$$f(t) = \frac{d^2}{dt^2} (t.e^{-4t})$$

Sol.

$$t.e^{-4t} \to \frac{1}{(i\omega+4)^2}$$
, $\frac{d^2}{dt^2}(t.e^{-4t}) \to (i\omega)^2.\left[\frac{1}{(i\omega+4)^2}\right]$

4) Integration in time

$$\int_{-\infty}^{t} f(t)dt \rightarrow \left[\frac{F(\omega)}{(i\omega)}\right] + \left[\pi f(0)\delta(\omega)\right]$$

Example. Find F.T. for $f(t) = \int_{-\infty}^{t} e^{-4|t|} dt$ Sol.

$$e^{-4|t|} \rightarrow \frac{4}{\omega^2 + 16}$$
$$\int_{-\infty}^{t} e^{-4|t|} dt \rightarrow \frac{1}{i\omega} \left[\frac{4}{\omega^2 + 16}\right]$$

٦