Biomedical Engineering

Engineering Analysis
Dr. Shahad Ali Hammood
shahad.ali@mustaqbal-college.edu.iq

Lecture (4)

Example. prove that $\Gamma(\mathrm{n}+1)=\mathrm{n} \Gamma(\mathrm{n})$

Sol.

$\Gamma(n+1)=\int_{0}^{\infty} e^{-x} x^{n+1-1} \cdot d x=\int_{0}^{\infty} e^{-x} x^{n} \cdot d x$
$=\left[-x^{n} e^{-x}+n \int_{0}^{\infty} x^{n-1} \cdot e^{-x} \cdot d x\right]=\left[\left(-\infty e^{-\infty}-0\right)+n \Gamma(n)\right]=n \Gamma(n)$
Multiplication of Two Gamma Functions

1) $\Gamma(\mathrm{n}) \Gamma\left(\mathrm{n}+\frac{1}{2}\right)=\frac{\sqrt{\pi} \Gamma(2 \mathrm{n})}{2^{2 \mathrm{n}-1}}$
2) $\Gamma(\mathrm{p}) \Gamma(1-\mathrm{p})=\frac{\pi}{\sin (\mathrm{p} \pi)}$

Example. Find the solve
$\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)=\frac{\pi}{\sin \pi / 3}=\frac{2 \pi}{\sqrt{3}}$
$\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)=\frac{\sqrt{\pi} \Gamma \frac{1}{2}}{1 / \sqrt{2}}=\pi \sqrt{2}$

Unit Step Function (Heaviside Function)

The unit step function, $u(t)$, is defined as That is, \mathbf{u} is a function of time \mathbf{t}, and u has value zero at all points to the left of the origin and is equal to one on the right of the origin. It is defined as:
$\mathrm{U}(\mathrm{t})=\left\{\begin{array}{l}0, \mathrm{t}<0 \\ 1, \\ \mathrm{t} \geq 0\end{array}\right.$

The displaced unit step function $\mathrm{U}(\mathrm{t}-\mathrm{c})$ is defined as :
$U(t-c)= \begin{cases}0, & t<c \\ 1, & t \geq c\end{cases}$

Effects of the unit step function

The graph of $f(t)=t^{2}$ as shown

The graph of $f(t)=u(t-2) \cdot t^{2}$

For $t<2, u(t-2)=0 \therefore u(t-2) \cdot t^{2}=0 \cdot t^{2}=0$
$t \geq 2, u(t-2)=1 \therefore u(t-2) \cdot t^{2}=1 \cdot t^{2}=t^{2}$

Example. Sketch the graph of the following functions for $\mathrm{t}>0$
a) $f(t)=e^{-t}$
b) $f(t)=u(t-c) \cdot e^{-t}$
c) $f(t)=u(t-c) \cdot e^{-(t-c)}$
d) $\mathrm{f}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}}\{\mathrm{u}(\mathrm{t}-1)-\mathrm{u}(\mathrm{t}-2)\}$

Example. Sketch the graph of the function $f(t)=1-U_{c}(t)$
Sol.
$f(t)=1-\left\{\begin{array}{ll}0 & t<c \\ 1, & t \geq c\end{array}=\left\{\begin{array}{ll}1 & t<c \\ 0 & t \geq c\end{array} \quad c \geq 0\right.\right.$

Example. Sketch the graph of the function
$\mathrm{y}=(\mathrm{t}-3) \mathrm{u}_{2}(\mathrm{t})-(\mathrm{t}-2) \mathrm{u}_{3}(\mathrm{t})$ on the interval $\mathrm{t} \geq 0$
$y=\left\{\begin{array}{cc}(t-3) 0-(t-2) 0, & t<2 \\ (t-3) 1-(t-2) 0, & 2 \leq t<3 \\ (t-3) 1-(t-2) 1, & t \geq 3\end{array}=\left\{\begin{array}{cc}0 & t<2 \\ t-3 & 2 \leq t<3 \\ -1 & t \geq 3\end{array}\right.\right.$

Unit Impulse Function (Dirac delta function)

Dirac delta function ($\boldsymbol{\delta}$ function), also known as the unit impulse symbol-is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.
$\delta(\mathrm{x})=\left\{\begin{array}{cc}+\infty & , x=0 \\ 0 & , x \neq 0\end{array}\right.$

Properties of the Dirac Delta Function

1. $\int_{-\infty}^{\infty} \delta(x) d x=1$
2. $\delta(x)=\frac{d}{d x} u(x)$, where $u(x)$ is the unit step function
3. $\int_{-\infty}^{\infty} \delta(g(x)) f(x) d x=\delta(g(x))=\sum_{i} \frac{\delta\left(x-x_{i}\right)}{\left|g \prime\left(x_{i}\right)\right|}$
4. $\int_{-\infty}^{\infty} \delta(x) f(x) d x=f(0)$
5. $\int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) d x=f\left(x_{0}\right)$

Example. solve
$\int_{-\infty}^{\infty} \delta\left(x^{3}-x\right) e^{-x} d x$
Sol.
$g(x)=x^{3}-x, g^{\prime}(x)=3 x^{2}-1$
$g(x)=x\left(x^{2}-1\right)=x(x+1)(x-1) \quad, x_{1}=0, x_{2}=-1, x_{3}=1$
$\delta\left(x^{3}-x\right)=\frac{\delta(x)}{|-1|}+\frac{\delta(x+1)}{|2|}+\frac{\delta(x-1)}{|2|}$
$\int_{-\infty}^{\infty} \delta(x)+\frac{\delta(x+1)}{2}+\frac{\delta(x-1)}{2} e^{-x} d x=1+\frac{e^{x}}{2}+\frac{e^{-x}}{2}$

Fourier Transform for Special Function

$\mathbf{f}(\mathbf{t})$	$\mathbf{F}(\boldsymbol{\omega})$	$\mathbf{f (t)}$	$\mathbf{F}(\boldsymbol{\omega})$
$\mathrm{e}^{-\mathrm{at}}, \quad \mathrm{t} \geq 0$	$\frac{1}{\mathrm{i} \omega+\mathrm{a}}$	$1-\frac{\|\mathrm{t}\|}{\mathrm{T}},\|t\|<T$	$\frac{\sin ^{2}\left(\frac{\omega \mathrm{~T}}{2}\right)}{\omega^{2} \mathrm{~T} / 2}$
t. $\mathrm{e}^{-\mathrm{at}}$	$\frac{1}{(\mathrm{i} \omega+\mathrm{a})^{2}}$		
1	$\delta(\omega)$	$\mathrm{e}^{-\mathrm{t}^{2} / 2}$	$\mathrm{e}^{-\omega^{2} / 2}$
$\delta(t)$	1	$\operatorname{Sin}(\mathrm{at}), \mathrm{t}>0$	$\frac{\mathrm{a}}{(\mathrm{i} \omega)^{2}+\mathrm{a}^{2}}$
$\frac{\mathrm{a}}{\mathrm{t}^{2+\mathrm{a}^{2}}}$	$\frac{\mathrm{a}\|\omega\|}{\omega^{2}+\mathrm{a}^{2}}$	$\operatorname{Cos}(\mathrm{at}), t>0$	$\frac{\mathrm{i} \omega}{(\mathrm{i} \omega)^{2}+\mathrm{a}^{2}}$
$\mathrm{e}^{-\mathrm{a}\|\mathrm{t}\|}$	$\frac{\sin (\omega T)}{\omega}$	$\operatorname{Sin}(\mathrm{at}) \mathrm{t} \in(-\infty, \infty)$	$\frac{1}{2 i}[\delta(\omega-a)-\delta(\omega+a)]$
$\mathrm{U}(\mathrm{t}),\|\mathrm{t}\|<T$ pulse	$\operatorname{Cos}(\mathrm{at}) \mathrm{t} \in(-\infty, \infty)$	$\frac{1}{2}[\delta(\omega-\mathrm{a})+\delta(\omega+\mathrm{a})]$	

Example . Find Fourier transform for $\mathrm{f}(\mathrm{t})=\mathrm{U}(\mathrm{t})$ with $|\mathrm{t}|<T$ where $\mathrm{U}(\mathrm{t})$ is the unit function

Sol.

$\mathrm{t}<\mathrm{T}, \mathrm{t}>-\mathrm{T}$
$F(\omega)=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} f(t) \cdot \cos (\omega t) \cdot d t$

$=\frac{2}{\sqrt{2 \pi}} \int_{0}^{T} \cos (\omega t) d t=\left[\frac{2}{\sqrt{2 \pi}} \sin \frac{\omega t}{\omega}\right]_{0}^{T}$
$=\frac{2}{\sqrt{2 \pi}}\left[\sin \frac{\omega T}{\omega}\right]-0=\frac{2}{\sqrt{2 \pi}} \sin \frac{\omega T}{\omega}$

Properties of Fourier Transform

1) Time Shift Law

$\mathrm{f}(\mathrm{t}-\mathrm{a}) \mathrm{u}(\mathrm{t}-\mathrm{a}) \longrightarrow\left(e^{-i a \omega} F(\omega)\right)$
Example . Find Fourier transform for $\mathrm{f}(\mathrm{t})=e^{-3 t} \cdot \mathrm{u}(\mathrm{t}-1)$
Sol. $e^{-3[(t-1)+1]} \cdot u(t-1)=e^{-3-3(t-1)} \cdot u(t-1)$
$\mathrm{e}^{-3} \cdot e^{-3(t-1)} \cdot u(t-1)$
$F(\omega)=e^{-3} e^{-3 i \omega} \cdot\left[\frac{1}{i \omega+3}\right]$

2) Frequency Shift (Modulation)

$$
\begin{aligned}
& f(t) \cdot e^{ \pm i a t} \rightarrow F(\omega \pm a) \\
& f(t) \cdot \cos (a t) \rightarrow \frac{1}{2}[F(\omega-a)+F(\omega+a)] \\
& f(t) \cdot \operatorname{Sin}(a t) \rightarrow \frac{1}{2 i}[F(\omega-a)-F(\omega+a)]
\end{aligned}
$$

Example. Find F.T. for $f(t)=e^{-3|t|} \cdot \cos (4 t)$
Sol.
$e^{-3|t|} \rightarrow \frac{3}{\omega^{2}+9}$
$F(\omega)=\frac{1}{2}\left[\frac{3}{(\omega-4)^{2}+9}+\frac{3}{(\omega+4)^{2}+9}\right]$

Example . Find F.T. for $f(t)=U(t) \cdot \sin (5 t)$
Sol.
$\mathrm{U}(\mathrm{t}) \rightarrow \frac{\sin (\omega \mathrm{T})}{\omega}$
$\mathrm{U}(\mathrm{t}) \cdot \sin (5 \mathrm{t}) \rightarrow \frac{1}{2 i}\left[\frac{\sin ((\omega-5) T)}{(\omega-5)}-\frac{\sin ((\omega+5) T)}{(\omega+5)}\right]$

3) Derivative in time domain

$$
\begin{aligned}
\text { if } \mathrm{f}(\mathrm{t}) & \rightarrow \mathrm{F}(\omega) \\
\frac{\mathrm{df}(\mathrm{t})}{\mathrm{dt}} & \rightarrow(\mathrm{i} \omega) \mathrm{F}(\omega) \\
\frac{\mathrm{d}^{2} \mathrm{f}(\mathrm{t})}{\mathrm{dt}^{2}} & \rightarrow(\mathrm{i} \omega)^{2} \mathrm{~F}(\omega)
\end{aligned}
$$

Example. Find F.T. for $f(t)=\frac{d^{2}}{d t^{2}}\left(t . e^{-4 t}\right)$
Sol.
$t . e^{-4 t} \rightarrow \frac{1}{(i \omega+4)^{2}} \quad, \quad \frac{d^{2}}{d t^{2}}\left(t . e^{-4 t}\right) \rightarrow(i \omega)^{2} \cdot\left[\frac{1}{(i \omega+4)^{2}}\right]$

4) Integration in time

$$
\int_{-\infty}^{\mathrm{t}} \mathrm{f}(\mathrm{t}) \mathrm{dt} \rightarrow\left[\frac{\mathrm{~F}(\omega)}{(\mathrm{i} \omega)}\right]+[\pi \mathrm{f}(0) \delta(\omega)]
$$

Example. Find F.T. for $f(t)=\int_{-\infty}^{t} e^{-4|t|} . d t$
Sol.
$e^{-4|t|} \rightarrow \frac{4}{\omega^{2}+16}$
$\int_{-\infty}^{t} e^{-4|t|} d t \rightarrow \frac{1}{i \omega}\left[\frac{4}{\omega^{2}+16}\right]$

