

Analytical chemistry Chemical engineering department First class / first term Al-Mustaqbal-college Lecture Two

By

Asst. lect. Ban Ali Hassan

⇒ <u>Chemical Equilibrium</u>

State of a reaction mixture at which the forward reaction rate is equal to the reverse reaction rate.

There are two kinds of reactions: 1) Reversible reaction, $A + B \longrightarrow C + D$ $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$ 2) Irreversible reaction, $A + B \longrightarrow C + D$ $HCI + NaOH \longrightarrow NaCI + H_2O$

In generally, most of chemical reactions are consider as reversible reactions.

There are two kinds of system :

a) Homogenous reactions : chemical reactions in which the reactants and products have the same phase (solid , liquid , gas)

 $H_{2(g)} + C|_{2(g)} \rightarrow 2HC|_{(g)}$

 $2\mathrm{KOH}_{(I)} + \mathrm{H}_{2}\mathrm{C}_{2}\mathrm{O}_{4(I)} \rightarrow \mathrm{K}_{2}\mathrm{C}_{2}\mathrm{O}_{4(I)} + \mathrm{H}_{2}\mathrm{O}_{(I)}$

b) Heterogeneous reactions : chemical reactions in which the reactants and products have more than phase .

$$FeS_{(s)} + HCI_{(l)} \rightarrow FeCI_{2(l)} + H_2S_{(g)}$$

⇒ <u>The Equilibrium Constant</u>

For a reaction: $aA + bB \leftrightarrow cC + d$ equilibrium constant: $K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$

The **equilibrium constant**, **Kc**, is the ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients.

What Does the Value of *K* Mean?

*When $10^{-3} < K < 10^3$, the reaction is considered to contain a significant amount of both reactants and products at equilibrium.

⇒<u>Magnitude of Kc</u>

The Reaction Quotient (Q)

- Q gives the same ratio the equilibrium expression gives, but for a system that is *not* at equilibrium.
- To calculate Q, substitute the (*initial*) concentrations of reactants and products into the equilibrium expression.

 $aA + bB \Rightarrow cC + dD$

 $Q = \frac{[C]^c [D]^d}{[A]^a [B]^b}$

At equilibrium

Using Q and K to Predict the Direction of a Reaction

We can predict the direction of a reaction by comparing the values of Q and K.

Factors effecting the reactions at equilibrium :

 nature of reactant substances : depends upon the difference in crystal and molecular structure .

Na is react much faster than Mg with water.

Red phosphorus is react much faster than carbon.

 Temperature: the speed of chemical reactions will increase with the increasing of temperature . there are two kinds of thermal reactions:

- a) Exothermic reaction ∆H(-)
- b) Endothermic reaction ∆H(+)
- # Increasing of temperature favour forward reaction.
- # Decreasing of temperature favour backward reaction.

 Concentration : The rate of chemical reaction will increase with the increasing of concentration.

 Solution and surface : Increasing the surface of the solution due to an increasing in rate of reaction.

5) Catalyste : There are two kinds of catalysts :

Positive catalyst ; increase the rate of reaction.

b) Negative catalyst ; decrease the rate of reaction.

Pressure : it use when we deals with gas :

CO + 2H2 - 2CH3OH

Increasing of pressure will shift the reaction direction of less or lower volume this means, to forward direction.

While; H_{2(g)} + I_{2(g)} - 2HI

Increasing in pressure will not effect on this reaction because the volume of product equal to volume of reactant.

Equilibrium constant expressions :

Kw = ion product (or ionization) constant for water .

K.S.P = solubility product constant.

- Ka = ionization (or dissociation) constant of a weak acid.
- Kb = ionization (or dissociation) constant of a weak base.
- Kh = hydrolysis constant.
- Kf = formation constant (mostly use for complex).
- Kinst. = instability constant of complex ion.

Ion product constant for water (Kw) :

Aqueous solutions contains small amount of hydronium [H₃O⁺] and hydroxide

[OH'] ions as a consequence of the dissociation reaction :

$$2H_2O \longrightarrow H_3O^+ + OH^-$$
 or $H_2O + H_2O \longrightarrow H_3O^+ + OH^-$
(acid) (base)
 H_2O acid gives H^+ to H_2O base to produce H_3O^+ .
 $K = \frac{[H3O+][OH-]}{[H2O]^2}$
 $K [H_2O]^2 = [H_3O^+][OH^-] = Kw$
 $Kw = [H_3O^+][OH^-] = 1x10^{-14} mol^2/L^2$

 $\boldsymbol{K}_{\boldsymbol{w}}$ increase with the increase of temperature, and it decrease with decreasing of temperature.

 $\mathbf{K}_{\mathbf{w}}$ is used only for water and it applicated only for reversible reaction.

```
<u>EX.</u>: Calculate hydronium and hydroxide ion conc. of pure water at 25C<sup>o</sup> and 100C<sup>o</sup>?
```

Because OH and H₃O are formed from the dissociation of water only, then their conc. must be equal, then :

[H₃O⁺] = [OH[•]]

Subsititution into equation (2-10) gives :

[H₃O^{*}]² = [OH⁻]² = Kw

[H₃0⁺] = [OH⁻] = √KaCa

At $25C^{\circ}$ [H₃O⁺] = [OH⁻] = $\sqrt{1.01 \times 10 - 14} = 1.01 \times 10^{-7}$

At 100 C° $[H_3O^+] = [OH^-] = \sqrt{49x10 - 14} = 7.0 \times 10^{-7}$

⇒ <u>Calculating Equilibrium Concentrations</u>

Use ICE Tables To Solve Equilibrium Problems For Kc Or Equilibrium Amounts:

1. I = initial concentration: Initial concentration of reactants are usually given; initial [Product]'s are assumed to be 0 unless otherwise specified.

2. C = **change in concentration**: Assign change as the variable x; use the stoichiometry of the reaction to assign changes for all species.

3. E = equilibrium concentration: E = I + C

Example 1\\ In an analysis of the following reaction at 100°C

$$Br_{2(g)} + Cl_{2(g)} \leftrightarrow 2BrCl_{(g)}$$

the equilibrium concentrations are $[Br_2] = 2.3 \times 10^{-3} M$, $[Cl_2] = 1.2 \times 10^{-2} M$, $[BrCl] = 1.4 \times 10^{-2} M$. Write the equilibrium expression and calculate Kc for this reaction.

Solution:

$$K_{c} = \frac{[BrCL]^{2}}{[Br]_{2}[Cl]_{2}}$$
$$K_{c} = \frac{[1.4 \times 10^{-2}]^{2}}{[2.3 \times 10^{-3}][1.2 \times 10^{-2}]} = 7.1$$

Example 2\\ Determine the initial concentration of HI if the initial concentrations of H₂ and I₂ are both 0.10 *M* and their equilibrium concentrations are both 0.043 *M* at 430°C. The value of Kc = 54.3

$$H_{2(g)} + I_{2(g)} \leftrightarrow \text{2HI}_{\text{(g)}}$$

Solution:

	$H_2(g) +$	$I_2(g) \rightleftharpoons$	2HI(g)
Initial	0.10	0.10	У
Change	-X	-X	+2x
Equilibrium	0.043	0.043	y + 2x

First solve for x: 0.10 - x = 0.043; x = 0.057Then solve for y: at equilibrium we have $K_c = 54.3 = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{(y + 0.114)^2}{(0.043)(0.043)}$ $(y + 0.114)^2 = (54.3)(0.043)^2 \Rightarrow y = \sqrt{(54.3)(0.043)^2} - 0.114 = 0.203$

Example $3\setminus$ A closed system initially containing 1.000 x 10-3 M H₂ and 2.000 x 10-3 M I₂ at 448°C is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87 x 10-3 M. Calculate K_c at 448°C for the reaction taking place, which is

$\mathbf{L}_2(\mathbf{g}) + \mathbf{L}_2(\mathbf{g}) + \mathbf{L}_2(\mathbf{g})$			
	[H ₂], M	[I ₂], M	[HI], <i>M</i>
Initially	1.000 × 10 ⁻³	2.000 x 10 ⁻³	0
Change			
Equilibrium			1.87 x 10 ⁻³

$H_{2(g)} + I_{2(g)} \leftrightarrow \text{2HI}_{\text{(g)}}$

[HI] Increases by 1.87 x 10⁻³ M

	[H ₂], M	[I ₂], M	[HI], <i>M</i>
Initially	1.000 x 10 ⁻³	2.000 x 10 ⁻³	0
Change			+1.87 x 10 ⁻³
Equilibrium			1.87 x 10 ⁻³

Stoichiometry tells us [H₂] and [I₂] decrease by half as much.

	[H ₂], M	[I ₂], M	[HI], <i>M</i>
Initially	1.000×10^{-3}	2.000×10^{-3}	0
Change	-9.35 x 10 ⁻⁴	-9.35 x 10 ⁻⁴	+1.87 x 10 ⁻³
Equilibrium			1.87 x 10 ⁻³

Calculate the equilibrium concentrations of all three compounds...

	[H ₂], M	[I ₂], M	[HI], <i>M</i>
Initially	1.000 x 10 ⁻³	2.000 x 10 ⁻³	0
Change	-9.35 x 10 ⁻⁴	-9.35 x 10 ⁻⁴	+1.87 x 10 ⁻³
Equilibrium	6.5 x 10 ⁻⁵	1.065 x 10 ⁻³	1.87 x 10 ⁻³

 $\kappa_{\rm c} = \frac{[\rm HI]^2}{[\rm H_2] \ [I_2]} = \frac{(1.87 \times 10^{-3})^2}{(6.5 \times 10^{-5})(1.065 \times 10^{-3})} = 51$