

Analytical chemistry

# Chemical engineering department 

First class / first term
Al-Mustaqbal-college Lecture Two

By
Asst. lect. Ban Ali Hassan

## Lecture Two

## $\Rightarrow$ Chemical Equilibrium

State of a reaction mixture at which the forward reaction rate is equal to the reverse reaction rate.

There are two kinds of reactions:

1) Reversible reaction, $A+B \Longrightarrow C+D$

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

2) Irreversible reaction , $A+B \longrightarrow C+D$

$$
\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

In generally, most of chemical reactions are consider as reversible reactions.

There are two kinds of system :
a) Homogenous reactions: chemical reactions in which the reactants and products have the same phase ( solid, liquid, gas )

$$
\begin{gathered}
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})} \\
2 \mathrm{KOH}_{(\mathrm{l})}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{l})} \rightarrow \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{gathered}
$$

b) Heterogeneous reactions: chemical reactions in which the reactants and products have more than phase .

$$
\mathrm{FeS}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{l})} \rightarrow \mathrm{FeCl}_{2(\mathrm{l})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}
$$

## Lecture Two

## $\Rightarrow$ The Equilibrium Constant

For a reaction: $\mathrm{aA}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{d}$
equilibrium constant: $\quad K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
The equilibrium constant, Kc , is the ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients.

## What Does the Value of $K$ Mean?

- If $K \gg 1$, the reaction is product-favored; product predominates at equilibrium.
- If $K \ll 1$, the reaction is reactant-favored; reactant predominates at equilibrium.

```
K<< 1, equilibrium "lies to the left"
```

*When $10^{-3}<K<10^{3}$, the reaction is considered to contain a significant amount of both reactants and products at equilibrium.

## Lecture Two

## $\Rightarrow$ Magnitude of Kc

## The Reaction Quotient (Q)

- Q gives the same ratio the equilibrium expression gives, but for a system that is not at equilibrium.
- To calculate $Q$, substitute the (initial) concentrations of reactants and products into the equilibrium expression.

$$
\begin{gathered}
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD} \\
Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{gathered}
$$

At equilibrium


## Using Q and K to Predict the Direction of a Reaction

We can predict the direction of a reaction by comparing the values of $Q$ and $K$.
$Q>K \Rightarrow$ reverse reaction favored
$Q=K \Rightarrow$ equilibrium present
$Q<K \Rightarrow$ forward reaction favored

## Lecture Two

## Factors effecting the reactions at equilibrium :

1) nature of reactant substances: depends upon the difference in crystal and molecular structure.

Na is react much faster than Mg with water.
Red phosphorus is react much faster than carbon.
2) Temperature: the speed of chemical reactions will increase with the increasing of temperature . there are two kinds of thermal reactions:
a) Exothermic reaction $\Delta \mathrm{H}(-)$
b) Endothermic reaction $\Delta H(+)$
\# Increasing of temperature favour forward reaction.
\# Decreasing of temperature favour backward reaction.
3) Concentration: The rate of chemical reaction will increase with the increasing of concentration.
4) Solution and surface: Increasing the surface of the solution due to an increasing in rate of reaction.
5) Catalyste: There are two kinds of catalysts :
a) Positive catalyst ; increase the rate of reaction.
b) Negative catalyst ; decrease the rate of reaction.
6) Pressure: it use when we deals with gas:

$$
\mathrm{CO}+2 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{OH}
$$

## Lecture Two

Increasing of pressure will shift the reaction direction of less or lower volume this means, to forward direction.

While; $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}$
Increasing in pressure will not effect on this reaction because the volume of product equal to volume of reactant .

## Equilibrium constant expressions:

$\mathrm{Kw}=$ ion product (or ionization) constant for water .
K.S.P $=$ solubility product constant.
$\mathrm{Ka}=$ ionization (or dissociation) constant of a weak acid.
$\mathrm{Kb}=$ ionization (or dissociation) constant of a weak base.
$\mathrm{Kh}=$ hydrolysis constant.
$\mathrm{Kf}=$ formation constant ( mostly use for complex).
Kinst. $=$ instability constant of complex ion.

## Ion product constant for water (Kw):

Aqueous solutions contains small amount of hydronium $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and hydroxide
[ $\mathrm{OH}^{\prime}$ ] ions as a consequence of the dissociation reaction :

$$
\begin{gathered}
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \text {or } \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
\text {(acid) (base) }
\end{gathered}
$$

$\mathrm{H}_{2} \mathrm{O}$ acid gives $\mathrm{H}^{+}$to $\mathrm{H}_{2} \mathrm{O}$ base to produce $\mathrm{H}_{3} \mathrm{O}^{+}$.
$K=\frac{[\mathrm{H} 3 \mathrm{O}+][\mathrm{OH}-]}{[\mathrm{H} 2 \mathrm{O}] 2}$
$\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}$
$\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{*}\right]=1 \times 10^{-14} \mathrm{~mol}^{2} / \mathrm{L}^{2}$

## Lecture Two

$\mathbf{K}_{\mathbf{w}}$ increase with the increase of temperature, and it decrease with decreasing of temperature.
$K_{w}$ is used only for water and it applicated only for reversible reaction.

EX. : Calculate hydronium and hydroxide ion conc. of pure water at $25 \mathrm{C}^{\circ}$ and $100 \mathrm{C}^{\circ}$ ?

Because $\mathrm{OH}^{-}$and $\mathrm{H}_{3} \mathrm{O}^{+}$are formed from the dissociation of water only, then their conc. must be equal, then :

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]
$$

Subsititution into equation (2-10) gives :
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{KW}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{*}\right]=\sqrt{\mathrm{KaCa}}$
At $25 \mathrm{C}^{\circ}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{1.01 \times 10-14}=1.01 \times 10^{-7}$
At $100 \mathrm{C}^{\circ}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{*}\right]=\sqrt{49 \times 10-14}=7.0 \times 10^{7}$

## $\Rightarrow$ Calculating Equilibrium Concentrations

## Use ICE Tables To Solve Equilibrium Problems For Kc Or Equilibrium Amounts:

1. I = initial concentration: Initial concentration of reactants are usually given; initial [Product]'s are assumed to be 0 unless otherwise specified.
2. $\mathbf{C}=$ change in concentration: Assign change as the variable $x$; use the stoichiometry of the reaction to assign changes for all species.
3. $\mathrm{E}=$ equilibrium concentration: $\mathrm{E}=\mathrm{I}+\mathrm{C}$

## Lecture Two

Example $1 \backslash \mathrm{In}$ an analysis of the following reaction at $100^{\circ} \mathrm{C}$ $\mathrm{Br}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{BrCl}_{(\mathrm{g})}$
the equilibrium concentrations are $\left[\mathrm{Br}_{2}\right]=2.3 \times 10^{-3} \mathrm{M},\left[\mathrm{Cl}_{2}\right]=1.2 \times 10^{-2} \mathrm{M}$, $[\mathrm{BrCl}]=1.4 \times 10^{-2} \mathrm{M}$. Write the equilibrium expression and calculate Kc for this reaction.
Solution:
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{BrCL}]^{2}}{[\mathrm{Br}]_{2}[\mathrm{Cl}]_{2}}$
$K_{c}=\frac{\left[1.4 \times 10^{-2}\right]^{2}}{\left[2.3 \times 10^{-3}\right]\left[1.2 \times 10^{-2}\right]}=7.1$
Example $2 \backslash$ Determine the initial concentration of HI if the initial concentrations of $\mathrm{H}_{2}$ and $\mathrm{I}_{2}$ are both 0.10 M and their equilibrium concentrations are both 0.043 M at $430^{\circ} \mathrm{C}$. The value of $\mathrm{Kc}=54.3$ $\mathbf{H}_{\mathbf{2}(\mathrm{g})}+\mathbf{I}_{\mathbf{2}(\mathrm{g})} \leftrightarrow \mathbf{2 H I}_{(\mathrm{g})}$

Solution:

|  | $\mathrm{H}_{2}(g)+$ | $\mathrm{I}_{2}(g) \rightleftharpoons$ | $2 \mathrm{HI}(g)$ |
| :--- | :--- | :--- | :--- |
| Initial | 0.10 | 0.10 | y |
| Change | -x | -x | +2 x |
| Equilibrium | 0.043 | 0.043 | $\mathrm{y}+2 \mathrm{x}$ |

First solve for $\mathrm{x}: ~ 0.10-\mathrm{x}=0.043 ; \mathrm{x}=0.057$
Then solve for $y$ : at equilibrium we have
$K_{c}=54.3=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(y+0.114)^{2}}{(0.043)(0.043)}$
$(y+0.114)^{2}=(54.3)(0.043)^{2} \Rightarrow y=\sqrt{(54.3)(0.043)^{2}}-0.114=0.203$

## Lecture Two

Example $3 \backslash \backslash$ A closed system initially containing $1.000 \times 10-3 \mathrm{M} \mathrm{H}$ and $2.000 \times$ $10^{3} \mathrm{M} \mathrm{I}_{2}$ at $448^{\circ} \mathrm{C}$ is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is $1.87 \times 10-3 \mathrm{M}$. Calculate $\mathrm{K}_{\mathrm{c}}$ at $448^{\circ} \mathrm{C}$ for the reaction taking place, which is
$\mathbf{H}_{\mathbf{2 ( g )}}+\mathbf{I}_{\mathbf{2 ( g )})} \leftrightarrow \mathbf{2 H I}_{(\mathrm{g})}$

|  | $\left[\mathrm{H}_{2}\right], M$ | $\left[\mathrm{I}_{2}\right], M$ | $[\mathrm{HI}], M$ |
| :--- | :---: | :---: | :---: |
| Initially | $1.000 \times 10^{-3}$ | $2.000 \times 10^{-3}$ | 0 |
| Change |  |  |  |
| Equilibrium |  |  | $1.87 \times 10^{-3}$ |

[HI] Increases by $1.87 \times 10^{-3} \mathrm{M}$

|  | $\left[\mathrm{H}_{2}\right]_{,} M$ | $\left[\mathrm{I}_{2}\right]_{,} M$ | $[\mathrm{HI}]_{,} M$ |
| :--- | :---: | :---: | :---: |
| Initially | $1.000 \times 10^{-3}$ | $2.000 \times 10^{-3}$ | 0 |
| Change |  |  | $+1.87 \times 10^{-3}$ |
| Equilibrium |  |  | $1.87 \times 10^{-3}$ |

Stoichiometry tells us [ $\mathrm{H}_{2}$ ] and [ $\mathrm{I}_{2}$ ] decrease by half as much.

|  | $\left[\mathrm{H}_{2}\right], M$ | $\left[\mathrm{I}_{2}\right], M$ | $[\mathrm{HI}], M$ |
| :--- | :---: | :---: | :---: |
| Initially | $1.000 \times 10^{-3}$ | $2.000 \times 10^{-3}$ | 0 |
| Change | $-9.35 \times 10^{-4}$ | $-9.35 \times 10^{-4}$ | $+1.87 \times 10^{-3}$ |
| Equilibrium |  |  | $1.87 \times 10^{-3}$ |

## Lecture Two

Calculate the equilibrium concentrations of all three compounds...

|  | $\left[\mathrm{H}_{2}\right], M$ | $\left[\mathrm{I}_{2}\right], M$ | $[\mathrm{HI}], M$ |
| :--- | :---: | :---: | :---: |
| Initially | $1.000 \times 10^{-3}$ | $2.000 \times 10^{-3}$ | 0 |
| Change | $-9.35 \times 10^{-4}$ | $-9.35 \times 10^{-4}$ | $+1.87 \times 10^{-3}$ |
| Equilibrium | $6.5 \times 10^{-5}$ | $1.065 \times 10^{-3}$ | $1.87 \times 10^{-3}$ |

$$
K_{\mathrm{c}}=\frac{[H \mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{\left(1.87 \times 10^{-3}\right)^{2}}{\left(6.5 \times 10^{-5}\right)\left(1.065 \times 10^{-3}\right)}=51
$$

