

Analytical chemistry

Chemical engineering department

First class / first term
Al-Mustaqbal-college Lecture one

By
Asst. lect. Ban Ali Hassan

Lecture one

Solutions : Homogenous mixture for two or more substances, one of them called solute and the other one is the solvent .
\# The solute is an active substance in reaction and the solvent is active.
\# There are many solutions formed by dissolving gasses in liquids like CO_{2} in water.
\# Homogenous solution : A partial homogenous mixing for two or more substances that will not react chemically with each other.
\# Heterogeneous solution : Represent with suspended and colloidal solution.
\# Aqueous solution : is the solution in which water is the solvent. \# Non-aqueous solution : when the solvent is any substance except water.

Classification of solutions are depends upon:

a) nature of molecules (or the volume of atoms or molecules of solute) ,these solutions are :

1) True solution.
2) Suspended solution.
3) Colloidal solution.
b) solute concentration in solution, it can be classified into :
4) saturated solution.
5) unsaturated solution.
6) super saturated solution.

Lecture one

Units of weight and concentration:

Concentration of solution : is the weight of solute dissolved in a given amount (volume or weight) of solvent.

Weight of solute can be expressed by :

1) physical units, e.g. gram(g), milligram(mg), kilogram(kg).
2) chemical units : - includes ,
a) g- atomic weight.
b) g - molecular weight.
c) g - formula weight.
d) g - ionic weight.
e) g-equivalent weight.

Mole : is the summation of the atomic weight in grams for all of the atoms in the chemical formula for the species,.
No. of moles $=\mathrm{Mw}(\mathrm{g}) / \mathrm{M} . \mathrm{wt}(\mathrm{g} / \mathrm{m})$

Methods for the expression of concentration of solutions :

There are several methods for express the concentration of solutions :

1) Molarity (M) : moles of solute contained in one liter of solution or $\mathrm{mol} / \mathrm{L}$ or $\mathrm{ml} . \mathrm{mol} / \mathrm{ml}$
2) Normality (N) : number of g-equivalent weight of solute that are contained in a liter of solution.

Lecture one

General principles to calculate the equivalent weight :

a) for acids :

eq.wt of acid $=\frac{\text { M.wt of acid }}{\text { no.of } \mathrm{H}+\text { active }}$
There are many types of acids :

1) mono basic acid: $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{HF}, \ldots \ldots \ldots$. ect.
2) di basic acid: $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SO}_{3}, \ldots \ldots \ldots$.........
3) tri bacic acid: $\mathrm{H}_{3} \mathrm{PO}_{4}$, ect.

T ${ }^{\text {T }}$ ($\mathrm{H}+$

1. Sulphuric Acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

For acids, X (valency factor) is the basicity
Basicity- basicity is the number of hydrogen ions or hydronium ions released by an acid.
In the case of sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2}$
The number of hydrogen ion released by sulphuric acid is 2 . Therefore, its valency factor or X value will be two.

The molecular weight of sulphuric acid is 94 .
As we know, Equivalent weight = molecular weight / X
The equivalent weight of sulphuric acid $=98 / 2=49$

b）for base ：

eq．wt of acid $=\frac{\text { M．wt of base }}{\text { no．of } \mathrm{OH}-\text { active }}$

$$
\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

eq．wt．of $\mathrm{NH}_{4} \mathrm{OH}=\frac{\text { M．wt of } \mathrm{NH} 4 \mathrm{OH}}{\text { no．of } \mathrm{OH}-\text { active }}=\frac{3.5}{1}=35$

$$
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

eq．wt．of $\mathrm{Ca}(\mathrm{OH})_{2}=$ \qquad

1．Caccium Hydroxide Ca（OH）

For the base，X（valency factor）is the acidity
Acidity－Acidty is the number of hydroxyl ions or hydroxide ions released by a base．
In the case of calcium hydroxide base Ca（OH）2
$\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}^{+}+2 \mathrm{OH}$
The number of hydroxyl ions released by the calcium hydroxide base is 2 ．Therefore，its valency factor or
Xvalue will be two．
The molecular weight of the calcium hydroxide base is 74.
As we kow，Equivient weight＝molecular weight $/ X$
The equivialent weight of caccium hydroxide base＝74／2 $=37$

Lecture one

d) for salts :

M.wt of salt

eq.wt of salt =

$$
\begin{gathered}
\text { No. of positive charge of salt } \\
\mathrm{Ag}^{+} \mathrm{NO}_{3}^{-}+\mathrm{H}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{Ag}^{+} \mathrm{Cl}+\mathrm{H}^{+} \mathrm{NO}_{3}^{-}
\end{gathered}
$$

eq.wt. of $\mathrm{Ag}^{+} \mathrm{NO}_{3}^{-}=\frac{\text { M.wt of } \mathrm{Ag}+\mathrm{NO} 3-}{1}$
eq.wt. of $\mathrm{Ag}_{2}^{+} \mathrm{O}^{-2}=\frac{\text { M.wt }}{2}$
eq.wt. of $\mathrm{Al}^{+3} \mathrm{PO}_{4}{ }^{-3}=\frac{\text { M.wt }}{3}$
eq.wt. of $\mathrm{Ca}_{3}{ }^{+2}\left(\mathrm{PO}_{4}\right)_{2}{ }^{-3}=\frac{\text { M.wt }}{6}$

1. Aluminium Chloride

Step by Step Calculation for Finding the Equivalent Weight of Aluminium Salts
For the metals, X (valency factor) is the total positive charge on the positive ion (cation).
In the case of aluminium chloride salt $\mathrm{Al}(\mathrm{Cl})_{3}$
$\mathrm{AlCl}_{3} \rightarrow \mathrm{Al}^{+3}+3 \mathrm{Cl}^{-}$
The number of positive charge on aluminium cation is three. Therefore, its valency factor or X value will be three.

The molecular weight of the calcium hydroxide base is $133.34 \mathrm{~g} / \mathrm{mol}$.
As we know, Equivalent weight = molecular weight / X
The equivalent weight of aluminium chloride salt= $133.34 / 3=44.44$.

Lecture one

f) for complex ion :

eq.wt. of complex ion $=\frac{\text { M.wt }}{\text { no.of charges }}$

$$
\mathrm{Ag}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)_{2}^{-}
$$

eq.wt. of $\mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)_{2}^{-}=\frac{\text { M.wt }}{1}$

$$
\mathrm{Cu}^{+2}+4 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{-2}
$$

eq.wt. of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{-2}=\frac{\text { M.wt }}{2}$

Example \backslash Calculate the molecular weight of the compound : $\mathrm{Fe}(\mathrm{OH})_{3} \cdot \mathbf{1 2} \mathbf{H}_{2} \mathrm{O}$
Atomic mass of iron $=55.85$
Atomic mass of oxygen $=16$
Hydrogen atomic mass $=1$
These atomic masses can be obtained from the periodic table
Molecular weight $=$ the sum of the atomic mass of each element in the molecular formula X the number of its presence in the formula

Molecular weight of $\left(\mathrm{Fe}(\mathrm{OH})_{3} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right)=\mathbf{5 5 . 5 8}+(\mathbf{1 6 + 1}) * \mathbf{3} \boldsymbol{+ 1 2 (1 * \mathbf { 2 } + \mathbf { 1 6 })}$

$$
=373.58 \mathrm{amu}
$$

Lecture one

For example, the molecular formula for hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$. There are 6 carbon atoms and 14 hydrogen atoms in each hexane molecule. The atomic weight of Carbon and Hydrogen can be found in the periodic table.

Carbon atomic weight: 12.01
Hydrogen atomic weight: 1.01
Molecular weight $=($ number of C carbon atoms $)($ atomic weight $)+$ (number of H atoms) (H atomic weight)

Molecular weight of hexane $=(\mathbf{6} \times 12.01)+(\mathbf{1 4} \times 1.01)$

$$
\begin{aligned}
& =72.06+14.14 \\
& =86.20 \mathrm{amu}
\end{aligned}
$$

Example: Find the molecular weight, Mw, of the following molecules:
N_{2}, NO,
$\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~N}_{2} \mathrm{O}_{4}$,
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$,
CO_{2},
$\mathrm{H}_{2} \mathrm{O}_{2}$,
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$,
$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$,
$\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$,
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$,
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$,
$\mathrm{H}_{2} \mathrm{SO}_{4}$,
$\mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{OH}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$.

Atomic weight: $(\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Mg}=24.3, \mathrm{Al}=27, \mathrm{~S}=32.1$, $\mathrm{Ca}=40.1, \mathrm{Zn}=65.4$)

Lecture one

$\mathrm{Mw}_{\mathrm{N}_{2}}=(2 \times 14)=28 \mathrm{amu}$
$M w_{\mathrm{N} 0}=(14)+(16)=30 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{C}_{2} \mathrm{H}_{6}}=(2 \times 12)+(6 \times 1)=30 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{N}_{2} 0_{4}}=(2 \times 14)+(4 \times 16)=92 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}}=(8 \times 12)+(18 \times 1)+(4 \times 16)+(2 \times 14)+(32)=238 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{CO}_{2}}=(12)+(2 \times 16)=44 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{H}_{2} 0_{2}}=(2 \times 1)+(2 \times 16)=34 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{Ca}_{\left(1(\mathrm{NO})_{2}\right)}}=(40.1)+2((14)+(3 \times 16))=164.1 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}}=(2 \times 27)+3((12)+(3 \times 16))=234 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{MgSO}_{4}, 7 \mathrm{H}, 0} 0(24.3)+(32.1)+(4 \times 16)+7((2 \times 1)+(16))=246.4 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{C}_{8} \mathrm{H}_{01} \mathrm{~N}_{4} 0_{2}}=(8 \times 12)+(10 \times 1)+(4 \times 14)+(2 \times 16)=194 \mathrm{amu}$
$M w_{\mathrm{C}_{6} \mathrm{H}_{0} 0_{6}}=(6 \times 12)+(12 \times 1)+(6 \times 16)=180 \mathrm{amu}$
$\mathrm{MW}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=(2 \times 1)+(32.1)+(4 \times 16)=98.1 \mathrm{amu}$
$\mathrm{Mw}_{\mathrm{C}_{2} \mathrm{H} \text { OH }}=(2 \times 12)+(5 \times 1)+(16)+(1)=46 \mathrm{amu}$
$\mathrm{Mw}_{\text {Zu(NO) })_{2}}=(65.4)+2((14+3 \times 16))=189.4 \mathrm{amu}$

Lecture one

Formula Weight ($\mathrm{F}_{\mathrm{w} .}$) :

It is the sum of the atomic weights of the atoms that make up the formula, and is denoted by the symbol Fw . The formula weight is used for compounds that exist in the form of ions or molecules in nature, and examples of compounds that contain ions are: Ionic compounds such as table salt (sodium chloride) NaCl

 على أيونات: المركبات الأيونية مثل مركب ملح الطعام (كلوريد الصوديوم) NaCl

Example
 Find the weight of the formula \mathbf{F}_{w} for the following :

$$
\mathrm{NaCl}, \quad \mathrm{Na}_{2} \mathrm{SO}_{4} ?
$$

Atomic Weights: $(\mathrm{Cl}=35.5, \mathrm{~S}=32, \mathrm{Na}=23, \mathrm{O}=16)$
$\mathrm{Fw}_{\mathrm{NaCl}}=23+35.5=58.5$
$\mathrm{Fw}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)=(2 \times 23)+32+(4 \times 16)=142$

