Al-Mustaqbal University College Department of Anesthesia techniques

Third Stage

Asst. Lect. Raghda M. Alshemari

2021-2022

Non Parametric tests

• These tests all assume that underlying distribution of variables (and/or estimated variables like the residuals in a regression) follow some "parametric" distribution –

• the usual assumption is that the variables are distributed as a "normal" distribution.

• We placed a great emphasis on checking whether a variable was distributed normally.

1. Binomial test

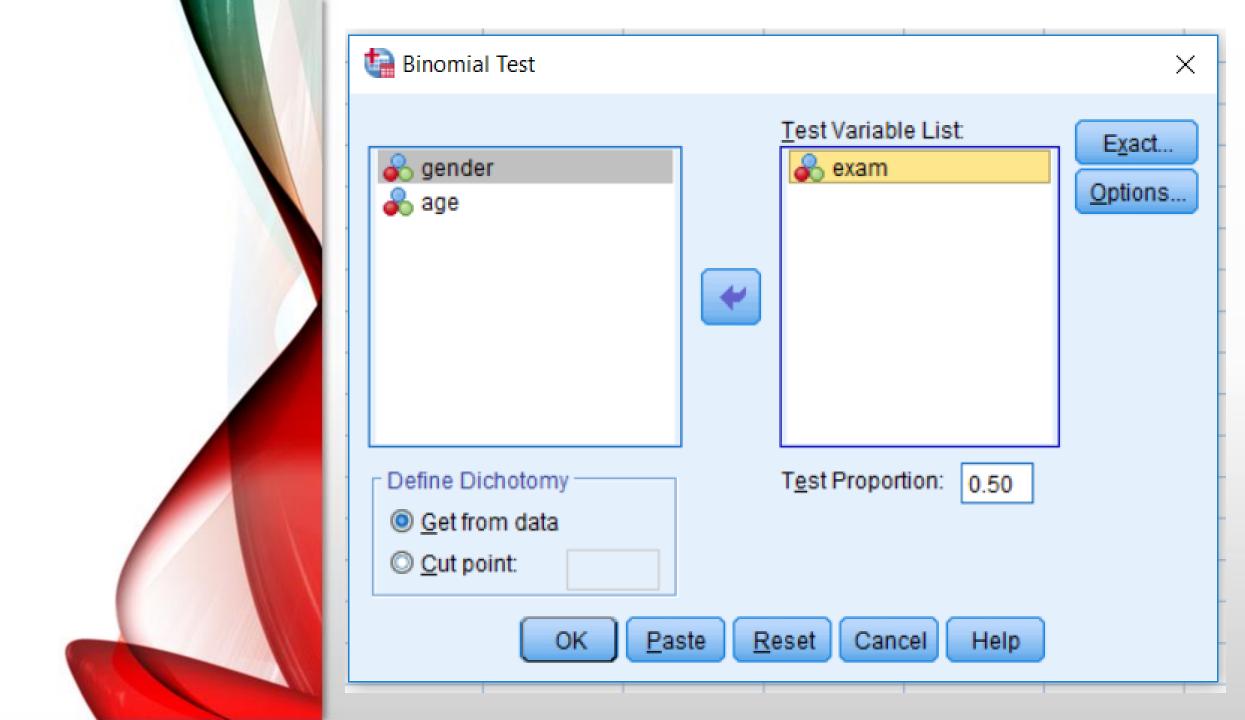
- Let's assume we have a variable whose distribution is binomial. That is, the variable can take on only one of two possible values, X and Z.
- The standard example is a coin toss
- The outcomes are distributed as binomial. There are two and only two possible outcomes (heads or tails) and if one occurs on a toss then the other cannot also occur on the same toss.

1. Binomial test

- The probability of a "tails" outcome and the probability of a "heads" outcome are the relevant parameters of the distribution.
- Once these are known, you can calculate the mean, standard deviation, etc.
- A variable like gender is distributed binomially. We want to test the parameters of the distribution the probabilities of the variable gender taking on the value 0 (or "male") versus the probability of it taking on the value 1 (or "female").

1. Binomial test

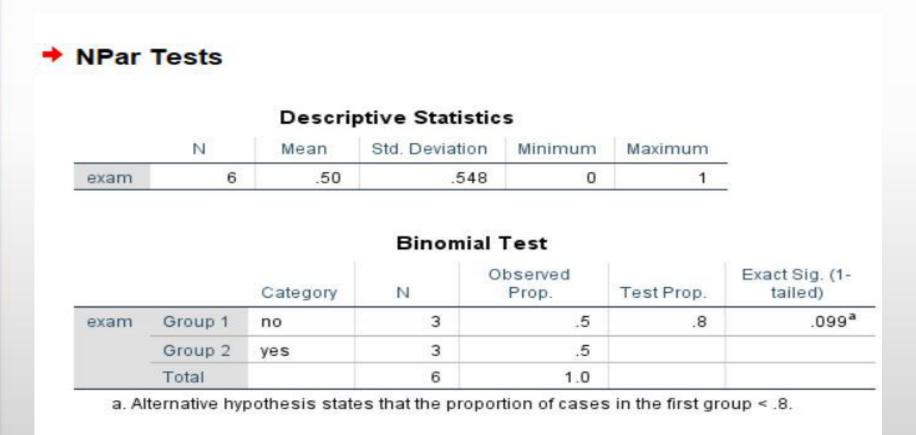
- Go to Analyze / Nonparametric Tests / Legacy Dialogs / Binomial.
- Place the variable *gender* into the area "Test Variable List"
- (note: you can place more than one variable into the list).
- Look at the area "Define Dichotomy."
- We have chosen "Get from data." This implies that the two possible outcomes are defined in the data


SS Statistics Data Editor

Transform		0.	1.112121	Estas 1	146-1	1.1 In					
<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	s <u>U</u> tilities	Extensions	<u>W</u> indow	Help					
	Re <u>p</u> orts D <u>e</u> scriptive Statistics <u>B</u> ayesian Statistics										
				•							
🔓 LastName	Ta <u>b</u> les			•	alary	💑 filter_\$	🛷 Ag	е	💰 Example	var	var
nowles	Co <u>m</u> pare Means			•	10050.0	1	1	3.00	1		
axter	<u>G</u> eneral Linear Model			•	36500.0	0	3	4.00	7		
elazquez	Generalized Linear Models			*	10050.0	0	2	2.00	9		
chultz	Mi <u>x</u> ed Models				41000.0	0	4	5.00	9		
rown	<u>C</u> orrelate <u>R</u> egression L <u>og</u> linear Neural Net <u>w</u> orks Classi <u>fy</u> <u>D</u> imension Reduction Sc <u>a</u> le			•	39000.0	1	4	4.00	10		
/ood				•	10050.0	1	3	2.00	11		
oyle				•	36500.0	1	34	4.00	13		
oleman					36500.0	1	5	4.00			
teele					36500.0	0	2	2.00			
Vilson					12000.0	0	4	7.00			
lorin					36500.0	0	3	8.00	-		
rown			- Tt-	•	8000.0	0	2	7.00			
erry		arametri	C Tests		💧 <u>O</u> ne Sar	nple	4	7.00			
handler	Forecas <u>t</u> ing				A Independent Samples 33			3.00			
loore	<u>S</u> urvival			P	<u> R</u> elated	Samples	2	3.00			
uckner	Multiple Response			•	<u>L</u> egacy	Chi-square				<u> </u>	
ensley	🚰 Missing Value Anal <u>v</u> sis				52000.0	1/1 Binomial					
irimes	Multiple Imputation			*	36500.0 0						
uber	Comp <u>l</u> ex Samples			•	29000.0						
illman	₩ Simulation				10050.0	0		A <u>1</u> -Sample K-S			
rice	Quality Control			*	41000.0	0		2 Independent Samples			
ang	Spatial and Temporal Modeling 🕨			29000.0	0		K Independent Samples				
Villiams	Direct Marketing			•	41000.0	0		📉 2 Related Samples			
mall	matthew Full Time			41000.0	1		<u>к</u>	Related Samples			
rown	Robert Full Time			36500.0	1		0.00				
lunoz	Ruth Part Time			29000.0	0	5	5.00	-			
.hmed	Noor		Full Time		2000.0		2	4.00	-		

• Look at the box "Test Proportion."

- We have chosen the default of 0.50. We are asking for a test that checks if the "Test Proportion" of .5 equals the probability of gender being equal to 0 ("male") for any one
- observation.
- As the probabilities have to add to 1, it follows that we are testing if the probability of gender being equal to 1 ("female")
- for any one observation =1- 0.50 = 0.50. Click on "OK."


~	Test Variable List: Exact
🗞 gender 🔗 age	Binomial Test: Options ×
	Statistics ☑ Descriptive ☑ Quartiles Missing Values Isclude cases test-by-test Isclude cases listwise
 Define Dichotomy <u>Get from data</u> <u>Cut point:</u> 	Cancel Help

NPar Tests

		Descri	otive Stat	istic	s				
	Ν	Mean	Std. Deviat	tion	Minimum	Maximum			
exam	6	.50	.548		0	1			
Double-click to activate mial Test Mial Test Observed Exact Sig. (2-Category N Prop. Test Prop. tailed)									
exam	Group 1	no	3		.50	.50	1.000		
	Group 2	yes	3		.50				
	Total		6		1.00				

• We repeat the same procedure, but with a different "Test Proportion." We use the proportion of .80. Click on "OK" after entering the hypothesis value of ".80" into the box "Test Proportion."

