Lecture No. 4,5
 "Kirchhoffs laws"

Lecture Four, Five

Kirchhoffs laws:

1. kirchhoffs voltage law:

The algebraic sum of voltages in any closed loop is zero .
$\Sigma V=0$
Now , from fig. 1 , there are three equation according to kirchhoffs voltage law .

Fig. 1
Loop 1 :
$\mathrm{E}-\mathrm{V} 1-\mathrm{V} 2=0$
$\mathrm{E}=\mathrm{V} 1+\mathrm{V} 2$
Loop 2 :
V2-V3-V4 = 0
$\mathrm{V} 2=\mathrm{V} 3+\mathrm{V} 4$
Loop 3 :
$\mathrm{E}-\mathrm{V} 1-\mathrm{V} 3-\mathrm{V} 4=0$
$\mathrm{E}=\mathrm{V} 1+\mathrm{V} 3+\mathrm{V} 4$

Example : For the circuit shown in fig. 2 , using kirchhoffs voltage law ,find V1 and V2 .

Fig. 2
Loop 1 :
$10-\mathrm{V} 2=0 \mathrm{~V} 2=10 \mathrm{v}$
Loop 2 :
$-10+6+\mathrm{V} 1=0$
V1 $=10-6=4 v$

2. kirchhoffs current law:

In any electrical network, the algebraic sum of currents meeting at a point (junction) is zero as shown in fig. 3 .
$\sum 1=0$

Fig. 3
$11+13=12+14+15$
$11+13-12-14-15=0$

Example : Using kirchhoffs current lae, find I 5 from fig. 4.

Fig. 4
At node 1 :
$11+12=13$
$2+3=5 \mathrm{~A}$, therefore $13=3 \mathrm{~A}$
At node 2 :
$13=14+15$
$5=1+15$
$15=5-1=4 \mathrm{~A}$
Example : Using kirchhoffs law , find I 1 , I 2 and I 3 for the circuit shown in fig. 5 .

Fig. 5
$11=12+13$
(1) Loop 1 :
$5+20-1+1012=0$
$511+1012=20$
$11+2 \mid 2=4$
Loop 2 :

10-12+13=0
$12=13$
From Equ. (2)
|1 = 4-2 | 2
Sub. Equ. (3) and (4) in (1)
$4-212=12+12$
$12=1 \mathrm{~A}$
From Equ. (4)
$11=4-(2 \times 1)=2 A$
$13=12$
$13=1 \mathrm{~A}$

Maxwells Method :

In this method loop current is used instead of branch currents as in kirchhoffs laws. Here, the current in different meshes are assigned continuous paths so that they do not split at a junction into branch current. Basically, this method consists of writing loop voltage equation in terms of the unknown loop currents.

Example : Using maxwells method, calculate all currents for the circuit shown in fig. 6 .

Fig. 6
Loop 1 :
$-20+5|1+10(11-\mid 2) 15| 1-10 \mid 2=20$
3|1-2|2=4 ---------(1)
Al-Mustaqbal University College
http://www.mustaqbal-

Loop 2 :
$10(12-11)+10 \mid 2=0$
10|2-10|1+10|2=0
$20|2=10| 1$
$11=212$
(2)
Sub. Equ. (2) in (1)
3(2|2)-2|2=4
612-212 = 4
$12=1 \mathrm{~A}$
$11=2|2| 1=2 A$
Now, branch current will be calculated as follows :
The current through 5Ω resistor $15 \Omega=11=2 \mathrm{~A}$.
The current through 10Ω resistor $110 \Omega=11-12=2-1=1 \mathrm{~A}$.
The current through 10Ω resistor $110 \Omega=12=1 \mathrm{~A}$.

