Chapter 3

Interpretation of Batch
Reactor Data
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A rate equation characterizes the rate of reaction, and its form may either be
suggested by theoretical considerations or simply be the result of an empirical
curve-fitting procedure. In any case, the value of the constants of the equation
can only be found by experiment; predictive methods are inadequate at present.

The determination of the rate equation is usually a two-step procedure; first
the concentration dependency is found at fixed temperature and then the temper-
ature dependence of the rate constants is found, yielding the complete rate
equation. A il Gla glal)

Equipment by which empirical information is obtained can be divided into
two types, the batch and flow reactors. The batch reactor is simply a container
to hold the contents while they react. All that has to be determined is the extent
of reaction at various times, and this can be followed in a number of ways,
for example:

1. By following the concentration of a given component.

2. By following the change in some physical property of the fluid, such as the
electrical conductivity or refractive index.

3. By following the change in total pressure of a constant-volume system.

Jeli 4. By following the change in volume of a constant-pressure system.

Sa b The experimental batch reactor is usually operated isothermally and at constant
4u >3 volume because it is easy to interpret the results of such runs. This reactor is a
sisall relatively simple device adaptable to small-scale laboratory set-ups, and it needs

ik Y s but little auxiliary equipment or instrumentation. Thus, it is used whenever
<= possible for obtaining homogeneous kinetic data. This chapter deals with the
22¢>15 batch reactor.

> The flow reactor is used primarily in the study of the kinetics of heterogeneous
g &l 13 reactions. Plannigg of e)'cperiments and interpretation of data obtained in flow
Jass reactors are considered in later chapters.
y a1y There are two procedures for analyzing kinetic data, the integral and the

La e i differential methods. In the integral method of analysis we guess a particular

... form ofrate equation and, after appropriate integration and mathematical manip-
Q\_-,\*j'\ iy ulation, predict that the plot of a certain concentration function versus time
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should yield a straight line. The data are plotted, and if a reasonably good straight
line is obtained, then the rate equation is said to satisfactorily fit the data.

In the differential method of analysis we test the fit of the rate expression to
the data directly and without any integration. However, since the rate expression
is a differential equation, we must first find (1/V)(dN/dt) from the data before
attempting the fitting procedure.

There are advantages and disadvantages to each method. The integral method
is easy to use and is recommended when testing specific mechanisms, or relatively
simple rate expressions, or when the data are so scattered that we cannot reliably
find the derivatives needed in the differential method. The differential method
is useful in more complicated situations but requires more accurate or larger
amounts of data. The integral method can only test this or that particular mecha-
nism or rate form; the differential method can be used to develop or build up
a rate equation to fit the data.

In general, it is suggested that integral analysis be attempted first, and, if not
successful, that the differential method be tried.

3.1 CONSTANT-VOLUME BATCH REACTOR

When we mention the constant-volume batch reactor we are really referring to
the volume of reaction mixture, and not the volume of reactor. Thus, this term
actually means a constant-density reaction system. Most liquid-phase reactions
as well as all gas-phase reactions occurring in a constant-volume bomb fall in
this class.

In a constant-volume system the measure of reaction rate of component i be-
comes

_1dN,_d(NJV) _dC, .
TVaE T ar @

or for ideal gases, where C = p/RT,

1 dp;
"TRT 4t @)

Thus, the rate of reaction of any component is given by the rate of change of
its concentration or partial pressure; so no matter how we choose to follow
the progress of the reaction, we must eventually relate this measure to the
concentration or partial pressure if we are to follow the rate of reaction.

For gas reactions with changing numbers of moles, a simple way of finding
the reaction rate is to follow the change in total pressure 7 of the system. Let
us see how this is done.

Analysis of Total Pressure Data Obtained in a Constant-Volume System. For
isothermal gas reactions where the number of moles of material changes during
reaction, let us develop the general expression which relates the changing total
pressure of the system 7 to the changing concentration or partial pressure of
any of the reaction components.
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Write the general stoichiometric equation, and under each term indicate the
number of moles of that component:

aA + bB +.--= rR + sS + -
At time 0: NAO NBO NR() NSO Ninen
Attimet: NA=NA0—ax NB=NBO—bx NR=NR0+rx NS:N50+SX Ninert

Initially the total number of moles present in the system is
Ny = Npo+ Nggt + -+ Nggt Ngg+ ++ =+ Nigen

but at time ¢ it is

@=N0+x(r+s+---—a—b—---) Ny + x An A3)
. /V-/Yc
An=r+s+--+-—a—b—--- Ah

Assuming that the ideal gas law holds, we may write for any refctant, say Ain
the system of volume V

where

_Pa _Na_ Ny—ax

CATRTTV v @
.. . pi0
Combining Eqgs. 3 and 4 we obtain i
S ALl
C :NAo_iN—No Aol 4
ATV An V D e )
or b
| IS sl
a ) gl S
Pa=CaART =pyo— An (7 — mp) &)

Equation 5 gives the concentration or partial pressure of reactant A as a function
of the total pressure 7 at time ¢, initial partial pressure of A, p,,, and initial total
pressure of the system, 7,.

Similarly, for any product R we can find

r

Pr = CRRT = ppy + An (m — m,) (6)

Equations 5 and 6 are the desired relationships between total pressure of the
system and the partial pressure of reacting materials.

It should be emphasized that if the precise stoichiometry is not known, or if
more than one stoichiometric equation is needed to represent the reaction, then
the “total pressure” procedure cannot be used.
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The Conversion. Let us introduce one other useful term, the fractional conver-
sion, or the fraction of any reactant, say A, converted to something else, or the
fraction of A reacted away. We call this, simply, the conversion of A, with
symbol X, .
Suppose that N, is the initial amount of A in the reactor at time ¢ = 0, and
that N, is the amount present at time 7. Then the conversion of A in the constant
volume system is given by

d);:ghl\ eyl Hlada W
AO—NA

NJV C,
Xy="22=1- =1-=2 (7
A NAO NAO/V CAO
and
dacC
dX,=-——2 ®)
CAO

We will develop the equations in this chapter in terms of concentration of reaction
components and also in terms of conversions.

Later we will relate X, and C, for the more general case where the volume
of the system does not stay constant.

Integral Method of Analysis of Data

General Procedure. The integral method of analysis always puts a particular
rate equation to the test by integrating and comparing the predicted C versus ¢
curve with the experimental C versus ¢ data. If the fit is unsatisfactory, another
rate equation is guessed and tested. This procedure is shown and used in the
cases next treated. It should be noted that the integral method is especially useful
for fitting simple reaction types corresponding to elementary reactions. Let us
take up these kinetic forms.

Irreversible Unimolecular-Type First-Order Reactions. Consider the reaction
sl g olaily
A — products 9

Suppose we wish to test the first-order rate equation of the following type,

dC,

AN = —_d}—szA A (10)

for this reaction. Separating and integrating we obtain C

AnJ
f Cap CA =it f 0 & w

or >

E——— JC an
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In terms of conversion (see Egs. 7 and 8), the rate equation, Eq. 10, becomes

X,

which on rearranging and integrating gives

foXAld—X;(A“kf dt

or

~In(1-X,) =kt (12)

A plotof In (1 — X,) or In (C,/Cy) vs. t, as shown in Fig. 3.1, gives a straight
line through the origin for this form of rate of equation. If the experimental data
seems to be better fitted by a curve than by a straight line, try another rate form
because the first-order reaction does not satisfactorily fit the data.

Caution. We should point out that equations such as

_4Cs

= kCYeCy

are first order but are not amenable to this kind of analysis; hence, not all first-
order reactions can be treated as shown above.

Irreversible Bimolecular-Type Second-Order Reactions. Consider the re-

action
A + B —products (13a)
A
Q
Sl o
L=
T
5 (o}
Cs o Eq.11or12
|
= Slope = k
=
T o
(o]
0 >
0

t

Figure 3.1 Test for the first-order rate equation, Eq. 10.
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with corresponding rate equation

dC dcC
—py = — th o dl‘B e (13b)

Noting that the amounts of A and B that have reacted at any time ¢ are equal
and given by C,,X,, we may write Egs. 13a and b in terms of X, as

T I,

L CAO_E;— = k(&«o - CAOXA)(SBO — CroXa)

Letting M = Cg,/C,, be the initial molar ratio of reactants, we obtain

dx,

7 = kC‘%\O(l — XM — X,)

—rp = Chyg

which on separation and formal integration becomes

X, dX,
0 (1 -X)WM - X,)

= Cuok | 't

After breakdown into partial fractions, integration, and rearrangement, the final
result in a number of different forms is

1_XB

M'_XA _ CBCAO__ CB
nl—XA In =1

n = n
M(l - XA) CBOCA MCA (14)
= CAO(M - l)kt = (CBO = CAO)kt’ M ?é 1

1 =1

Figure 3.2 shows two equivalent ways of obtaining a linear plot between the
concentration function and time for this second-order rate law.

A A
Q| ©
Eq. 14 S|E
m) <
SNle)
& < o
= o °
Slope = (CBO - CAO)k < | v
s > Eq. 14
\_ CBO E z
Intercept = In oo~ inM EE Slope = (Cgg — Cpglk
O P O -
0 0

t t

Figure 3.2 Test for the bimolecular mechanism A + B—R with C,, # Cy,
or for the second-order reaction, Eq. 13.
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If Cy, is much larger than C,,, Cy remains approximately constant at all times,
and Eq. 14 approaches Eq. 11 or 12 for the first-order reaction. Thus, the second-
order reaction becomes a pseudo first-order reaction.

Caution 1. In the special case where reactants are introduced in their stoichio-
metric ratio, the integrated rate expression becomes indeterminate and this
requires taking limits of quotients for evaluation. This difficulty is avoided if we
go back to the original differential rate expression and solve it for this particular
reactant ratio. Thus, for the second-order reaction with equal initial concentra-
tions of A and B, or for the reaction

2A — products (15a)
the defining second-order differential equation becomes

dC
A=~ _d_té = kC% = kCho(1 — X, ) (15b)

which on integration yields

ik 1 1 X,
CA CAO CAO 1= XA (16)

Plotting the variables as shown in Fig. 3.3 provides a test for this rate expression.
In practice we should choose reactant ratios either equal to or widely different
from the stoichiometric ratio.

Caution 2. The integrated expression depends on the stoichiometry as well as
the kinetics. To illustrate, if the reaction

A + 2B — products (17a)

A A

€ Eq. 16

|
)
Slope = CAOk
0 > 0 >

0 0

t t

Figure 3.3 Test for the bimolecular mechanisms, A + B—R with Cy, = Cy,
or for the second-order reaction of Eq. 15.
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is first order with respect to both A and B, hence second order overall, or

dC
—ry = = —£=kCyCy = kCh (1 = X)(M - 2X,) (17b)
The integrated form is
CBCAO M - 2XA
In =In = Cpo(M — 2)kt, M #2
aE e as)

When a stoichiometric reactant ratio is used the integrated form is

e (
i = =2kt, \M=2 19
Ca Cap Cal-—X, SN~ (1)

These two cautions apply to all reaction types. Thus, special forms for the
integrated expressions appear whenever reactants are used in stoichiometric
ratios, or when the reaction is not elementary.

Irreversible Trimolecular-Type Third-Order Reactions. For the reaction

A + B + D —products (20a)
let the rate equation be
dC
1y = = 5= kCyGyCo (20b)
or in terms of X,
AXa _ o Cho Cho
C‘A() dt - kCAO (1 XA) (CA() XA CA() XA

On separation of variables, breakdown into partial fractions, and integration,
we obtain after manipulation

L In Cao + 1 Cro

In
(CAO - CBO)(CAO - CDO) CA (CBO - CDO)(CBO - CAO) CB

1 Cho
+ In
(CD() - CAO)(CDO - CBO) CD

(1)
= kt

Now if Cp, is much larger than both C,, and Cg, the reaction becomes second
order and Eq. 21 reduces to Eq. 14.
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All trimolecular reactions found so far are of the form of Eq. 22 or 25. Thus

dcC
A +2B—>R with —r,=— _c—lt_A = kC,C} (22)

In terms of conversions the rate of reaction becomes

dX,

dt = kC2A0 (1 - XA)(M - 2XA)2

where M = Cgy/Cyp- On integration this gives

(ZCAO B CBO)(CBO B CB) CAOCB
+ In = (2C,g — Cgo)?kt, M #2 2
CoCa CaCao (2Cx0 B0) 23)
or
1 1
—_— - = M=2
c1 oy, ok (24)
Similarly, for the reaction
| dcC
A+B—R with —r,=— TtA = kC,C}% (25)
integration gives
(CAO B CBO)(CBO B CB) CAOCB
+ In = (Cag — Cro)?kt, M#1 2
CBOCB CBOCA ( A0 BO) ( 6)
or
1 1
— — —— = 2kt, M=1 27
G Ch @D

Empirical Rate Equations of nth Order. When the mechanism of reaction is
not known, we often attempt to fit the data with an nth-order rate equation of
the form

dc
b el (28)

which on separation and integration yields

Cln—Clgp=(n—-1kt, n#l (29)
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The order n cannot be found explicitly from Eq. 29, so a trial-and-error solution
must be made. This is not too difficult, however. Just select a value for » and
calculate k. The value of n which minimizes the variation in k is the desired
value of n.

One curious feature of this rate form is that reactions with order n > 1 can
never go to completion in finite time. On the other hand, for orders n < 1 this
rate form predicts that the reactant concentration will fall to zero and then
become negative at some finite time, found from Eq. 29, so

1._.

_ Cio'
C,=0 at tz(l—n)k

Since the real concentration cannot fall below zero we should not carry out
the integration beyond this time for n < 1. Also, as a consequence of this feature,
in real systems the observed fractional order will shift upward to unity as reactant
is depleted.

Zero-Order Reactions. A reaction is of zero order when the rate of reaction
is independent of the concentration of materials; thus

gl 3 55 e i ¥ Jelidl Jaea Ujﬁ‘i
R dCA _ Cull) Y Jasd
BJ\);S\
Integrating and noting that C, can never become negative, we obtain directly
Cao
CA()— CA= CAOXAZkt for t<7
(3D)

C

C,=0 for t= %

which means that the conversion is proportional to time, as shown in Fig. 3.4.
As arule, reactions are of zero order only in certain concentration ranges—the
higher concentrations. If the concentration is lowered far enough, we usually

Note the
| deviation
{ from
| zero-order
Eq. 31 : kinetics

Caolk

t

Figure 3.4 Test for a zero-order reaction, or rate equation, Eq. 30.
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find that the reaction becomes concentration-dependent, in which case the order
rises from zero.

In general, zero-order reactions are those whose rates are determined by some
factor other than the concentration of the reacting materials, e.g., the intensity
of radiation within the vat for photochemical reactions, or the surface available
in certain solid catalyzed gas reactions. It is important, then, to define the rate
of zero-order reactions so that this other factor is included and properly ac-
counted for.

Overall Order of Irreversible Reactions from the Half-Life 7,,. Sometimes, for
the irreversible reaction

aA + BB + - - - —products

we may write

If the reactants are present in their stoichiometric ratios, they will remain at
that ratio throughout the reaction. Thus, for reactants A and B at any time
Cy/Cy = Bla, and we may write

dC ’ B\’
—ry= - th_kCa (gcA) :k<;) ...CLKf'b'I'

or
- —A=kCn (32)

Integrating for n # 1 gives
C" — Cxf = k(n — 1y

Defining the half-life of the reaction, ¢, as the time needed for the concentration
of reactants to drop to one-half the original value, we obtain

~ 05" -1
C/SF {”0 tp = (Ol Vo A" (33a)

k(n —1)

This expression shows that a plot of log t;, vs. log C,, gives a straight line of
slope 1 — n, as shown in Fig. 3.5.

The half-life method requires making a series of runs, each at a different initial
concentration, and shows that the fractional conversion in a given time rises
with increased concentration for orders greater than one, drops with increased
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Eq. 33a }5‘)&

Slope=1-n
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go 2% order< 1 Order > 1
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log CAO

Figure 3.5 Overall order of reaction from
a series of half-life experiments, each at a
different initial concentration of reactant.

concentration for orders less than one, and is independent of initial concentration
for reactions of first order.

Numerous variations of this procedure are possible. For instance, by having
all but one component, say Ain large excess, we can find the order with respect
to that one component. For this situation the general expression reduces to

dcC A

where
k=k(Ch-+-) and Cy=Cg
And here is another variation of the half-life method.

Fractional Life Method #;. The half-life method can be extended to any frac-
tional life method in which the concentration of reactant drops to any fractional
value F = C,/C,, in time ;. The derivation is a direct extension of the half-life
method giving

Lgmall e Jeldill (g 4
il Clor Caill (o) (N J sl
k(n—1) A0 adaliin) Sy AT & seny

tp = (33b)

Thus, a plot of log # versus log C,y, as shown in Fig. 3.5, will give the reac-

tion order.
Example E3.1 illustrates this approach.

Irreversible Reactions in Parallel. Consider the simplest case, A decomposing
by two competing paths, both elementary reactions:
) ghe A&l ye OOle s
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