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CHAPTER FIVE 

TRANSIENT CONDUCTION 

Our objective in this chapter is to develop procedures for determining the time 

dependence of the temperature distribution within a solid during a transient process, as 

well as for determining heat transfer between the solid and its surroundings. The nature of 

the procedure depends on assumptions that may be made for the process. For example, 

temperature gradients within the solid may be neglected, a comparatively simple approach, 

termed the lumped capacitance method, may be used to determine the variation of 

temperature with time. 

5.1 The Lumped Capacitance Method 

Consider a hot metal forging that is initially at a uniform temperature 𝑇𝑖  and is 

quenched by immersing it in a liquid of lower temperature 𝑇∞ <  𝑇𝑖 Figure (5.1). If the 

quenching is said to begin at time 𝑡 =  0, the temperature of the solid will decrease for 

time 𝑡 >  0 , until it eventually reaches 𝑇∞ . This reduction is due to convection heat 

transfer at the solid-liquid interface. The essence of the lumped capacitance method is the 

assumption that the temperature of the solid is spatially uniform at any instant during the 

transient process. This assumption implies that temperature gradients within the solid are 

negligible. 

 

Figure (5.1) Cooling of a Hot Metal Forging 
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From Fourier’s law, heat conduction in the absence of a temperature gradient implies 

the existence of infinite thermal conductivity. Such a condition is impossible. However, 

the condition is closely approximated if the resistance to conduction within the solid is 

small compared with the resistance to heat transfer between the solid and its surroundings. 

Applying conservation energy to the control volume of Figure (5.1) this requirement takes 

the form 

−𝐸̇𝑜𝑢𝑡 = 𝐸̇𝑠𝑡                                                                         (5.1) 

−ℎ𝐴𝑠(𝑇 − 𝑇∞ ) = 𝜌𝑉𝐶𝑝

𝑑𝑇

𝑑𝑡
                                            (5.2) 

Introducing the temperature difference 

𝜃 = 𝑇 − 𝑇∞                                                                         (5.3) 

And recognizing that (𝑑𝜃/𝑑𝑡) = (𝑑𝑇/𝑑𝑡) if 𝑇∞ is constant, it follows that 

𝜌𝑉𝐶𝑝

ℎ𝐴𝑠 

𝑑𝜃

𝑑𝑡
= −𝜃                                                                   (5.4)   

Separating variables and integrating from the initial condition, for which 𝑡 = 0  and 

𝑇(0) = 𝑇𝑖 , we then obtain 

𝜌𝑉𝐶𝑝

ℎ𝐴𝑠 
∫

𝑑𝜃

𝜃

𝜃

𝜃𝑖

= − ∫ 𝑑𝑡

𝑡

0

  

𝜃𝑖 = 𝑇𝑖 − 𝑇∞ 

Evaluating the integrals, it follows that  

𝜌𝑉𝐶𝑝

ℎ𝐴𝑠 
ln

𝜃𝑖

𝜃
= 𝑡                                                                (5.5) 

𝜃

𝜃𝑖
=

𝑇 − 𝑇∞

𝑇𝑖 − 𝑇∞
= exp [− (

ℎ𝐴𝑠

𝜌𝑉𝐶𝑝 
) 𝑡]                          (5.6) 

Where 

𝑇𝑖: initial temperature (ºC) 

𝑇∞: surrounding temperature (ºC) 

𝑡: time (sec) 

𝐶𝑝: specific heat capacity (J/kg. ºC) 
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𝑉: volume (𝑚3) 

𝜌: density (𝑘𝑔/𝑚3) 

𝐴𝑠: surface area (𝑚2) 

ℎ: convection heat transfer coefficient (𝑊/𝑚2. 𝐾) 

Eq. (5.5) maybe used to determine the time required for the solid to reach some 

temperature (T), or, conversely, Eq. (5.6) maybe used to compute the temperature reached 

by the solid at some time (t). 

The foregoing results indicate that the difference between the solid and fluid 

temperatures must decay exponentially to zero as t approaches infinity. This behavior is 

shown in Figure (5.2). From Eq. (5.6) it is also evident that the quantity (𝑉𝑐/ℎ𝐴𝑠) may be 

interpreted as a thermal time constant expressed as 

𝜏𝑡 = (
1

ℎ𝐴𝑠 
) (𝜌𝑉𝐶𝑝) = 𝑅𝑡𝐶𝑡                                           (5.7) 

 

5.2 Validity of the Lumped Capacitance Method 

To develop a suitable criterion consider steady-state conduction through the plane 

wall of area (A) Figure (5.2). One surface is maintained at a temperature (𝑇𝑠,1) and the 

other surface is exposed to a fluid of temperature (𝑇∞ < 𝑇𝑠,1). The temperature of this 

surface will be some intermediate value, (𝑇𝑠,2), for which (𝑇∞ < 𝑇𝑠,2 < 𝑇𝑠,1). 

 
 

Figure (5.2) Effect of Biot Number on Steady State Temperature Distribution in a 

Plane Wall with Surface Convection. 
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Hence under steady-state conditions, the surface energy balance reduces to 

𝑘𝐴

𝐿
(𝑇𝑠,1 − 𝑇𝑠,2) = ℎ𝐴(𝑇𝑠,2 − 𝑇∞) 

where k is the thermal conductivity of the solid. Rearranging, we then obtain 

𝑇𝑠1 − 𝑇𝑠2

𝑇𝑠2 − 𝑇∞
=

𝐿 𝑘𝐴⁄

1 ℎ𝐴⁄
=

ℎ𝐿

𝑘
=

𝑅 𝑐𝑜𝑛𝑑.

𝑅 𝑐𝑜𝑛𝑣.
 

𝐵𝑖 =
ℎ𝐿

𝑘
                                                         (5.8) 

The quantity (hL/k) appearing in Eq. (5.8) is a dimensionless parameter. It is termed 

the Biot number (𝐵𝑖), and it plays a fundamental role in conduction problems that involve 

surface effects. Biot number provides a measure of the temperature drop in the solid 

relative to the temperature difference between the surface and the fluid. If 𝐵𝑖 ≪ 1, the 

resistance to conduction within the solid is much less than the resistance to convection 

across the fluid boundary layer. Hence the assumption of uniform temperature distribution 

is reasonable. 

If the following condition is satisfied 

𝐵𝑖 =
ℎ𝐿𝑐

𝑘
< 0.1                                                                   (5.9) 

The error associated with using the lumped capacitance method is small. For 

convenience, it is customary to define the characteristic length of Eq. (5.9) as the ratio of 

the solid’s volume to surface area (𝐿𝑐 = 𝑉/𝐴𝑠). 

Geometry The characteristic length (𝑳𝒄) 

Flat plate 𝐿/2 

Long cylinder 𝑟0/2 

Sphere 𝑟0/3 

Cube 𝐿/6 

Note: Volume and Area 

1- For a cylinder 

𝑉 =  𝜋 𝑟2𝐿 =
𝜋

4
𝐷2𝐿  

and     𝐴𝑠  =  2 𝜋 𝑟 𝐿 = 𝜋𝐷𝐿 
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2- For a sphere 

𝑉 =  
4

3
 𝜋 𝑟3 =

1

6
 𝜋 𝐷3 

and      𝐴𝑠 = 4 𝜋 𝑟2 = 𝜋𝐷2 

Finally, we note that, with (𝐿𝑐 = 𝑉/𝐴𝑠), the exponent of Eq. (5.6) maybe expressed as 

ℎ𝐴𝑠𝑡

𝜌𝑉𝐶𝑝 
= 𝐵𝑖. 𝐹𝑜   

Where Fourier number (𝐹0) is 

𝐹𝑜 =
𝛼𝑡

𝐿𝑐
2

                                                            (5.10) 

Substituting Eq. (5.10) into (5.6), we obtain 

𝜃

𝜃𝑖
=

𝑇 − 𝑇∞

𝑇𝑖 − 𝑇∞
= exp(−𝐵𝑖 . 𝐹𝑜)                       (5.11) 

 

Example (5.1): Steel balls (12 𝑚𝑚) in diameter are annealed by heating to (1150 𝐾) and 

then slowly cooling to (400 𝐾)  in an air environment for which (𝑇∞ = 325 𝐾)  and 

(ℎ = 20 𝑊/𝑚2.  𝐾). Assuming the properties of the steel to be (𝑘 =  40 𝑊/𝑚. 𝐾), (𝜌 =

7800 𝑘𝑔/𝑚3) , 𝑎𝑛𝑑 (𝐶𝑝 = 600 𝐽/𝑘𝑔. 𝐾) , estimate the time required for the cooling 

process. 

Solution:  

 
 

𝐵𝑖 =
ℎ𝐿𝑐

𝑘
=

ℎ(𝑟0/3)

𝑘
=

20 ∗ (0.006 3⁄ )

40
= 0.001 < 0.1   

The lumped capacitance method may be used 
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𝑡 =
𝜌𝑉𝐶𝑝

ℎ𝐴𝑠 
ln

𝑇𝑖 − 𝑇∞

𝑇 − 𝑇∞
 

𝑡 =
𝜌(𝜋 𝐷3 6⁄  )𝐶𝑝

ℎ𝜋𝐷2 
ln

𝑇𝑖 − 𝑇∞

𝑇 − 𝑇∞
   

𝑡 =
7800 ∗ (𝜋 (0.012)3 6⁄  ) ∗ 600

20 ∗ 𝜋(0.012)2 
ln

1150 − 325

400 − 325
   

𝑡 = 1122 𝑠 = 0.312 ℎ𝑟 

Example (5.2): Carbon steel shafts of (0.1 𝑚) diameter are heat treated in a gas-fired 

furnace whose gases are at (1200 𝐾) and provide a convection coefficient of (100 𝑊/

𝑚2. 𝐾). If the shafts enter the furnace at (300 𝐾), how long must they remain in the 

furnace to achieve a centerline temperature of (800 K)? Take (𝜌 = 7832 𝑘𝑔 𝑚3⁄ ), (𝑘 =

51.2 𝑊 𝑚⁄ . 𝐾), (𝐶𝑝 = 541 𝐽 𝐾𝑔⁄ . 𝐾). 

Solution:  

 

𝐵𝑖 =
ℎ𝐿𝑐

𝑘
=

ℎ(𝑟0/2)

𝑘
=

100 ∗ (0.05/2)

51.2
= 0.0488 < 0.1   

The lumped capacitance method may be used 

𝑡 =
𝜌𝑉𝐶𝑝

ℎ𝐴𝑠 
ln

𝑇𝑖 − 𝑇∞

𝑇 − 𝑇∞
 

𝑡 =
𝜌(𝜋 𝑟2𝐿 )𝐶𝑝

ℎ ∗ 2𝜋𝑟𝐿 
ln

𝑇𝑖 − 𝑇∞

𝑇 − 𝑇∞
 

𝑡 =
𝜌𝑟𝐶𝑝

2ℎ 
ln

𝑇𝑖 − 𝑇∞

𝑇 − 𝑇∞
   

𝑡 =
7832 ∗ 0.05 ∗ 541

2 ∗ 100 
ln

300 − 1200

800 − 1200
   

𝑡 = 859 𝑠 
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Example (5.3): The heat transfer coefficient for air flowing over a sphere is to be 

determined by observing the temperature-time history of a sphere fabricated from pure 

copper. The sphere, which is (12.7 𝑚𝑚) in diameter, is at (66 °𝐶) before it is inserted into 

an airstream having a temperature of (27 °𝐶). A thermocouple on the outer surface of the 

sphere indicates (55 °𝐶), after (69 𝑠) the sphere is inserted in the airstream. Assume, and 

then justify, that the sphere behaves as a space-wise isothermal object and calculate the 

heat transfer coefficient. Take (𝜌 = 8933 𝑘𝑔 𝑚3⁄ ), (𝑘 = 398 𝑊 𝑚⁄ . 𝐾), (𝐶𝑝 =

389 𝐽 𝐾𝑔⁄ . 𝐾). 

Solution: 

 

𝑇 − 𝑇∞

𝑇𝑖 − 𝑇∞
= exp [− (

ℎ𝐴𝑠

𝜌𝑉𝐶𝑝
) 𝑡] 

Where 𝐴𝑠 = 𝜋𝐷2                         𝑉 =
𝜋𝐷3

6
 

𝑇 − 𝑇∞

𝑇𝑖 − 𝑇∞
= exp [− (

ℎ𝜋𝐷2

𝜌(𝜋𝐷3 6⁄ )𝐶𝑝
) 𝑡] = exp [− (

6ℎ

𝜌𝐷𝐶𝑝
) 𝑡] 

55 − 27

66 − 27
= exp [− (

6ℎ

8933 ∗ 389 ∗ 12.7 ∗ 10−3
) ∗ 69] 

ℎ = 35.3 𝑊 𝑚2⁄ . 𝐾  

𝐿𝑐 = 𝐷0/6  

𝐵𝑖 =
ℎ𝐿𝑐

𝑘
=

ℎ(𝐷0/6)

𝑘
=

35.3 ∗ (0.0127 6⁄ )

398
= 1.88 × 10−4 

Hence, Bi < 0.1 and the spatially isothermal assumption is reasonable. 

  



    

      

Al-Mustaqbal University College                          8                        http://www.mustaqbal-college.edu.iq/ 

Class: 3rd  

Subject: Heat Transfer 
Lecturer: Dr. Athraa Al-Abbasi 

E-mail: Dr.AthraaHameed@mustaqbal-college.edu.iq 

 

 

Home Work (5): 

1- A (20 by 20 cm) slab of copper (5 𝑐𝑚) thick at a uniform temperature of (260 °𝐶) 

suddenly has its surface temperature lowered to (35 °𝐶). Find the time required for the 

plate to reach the temperature of (90 °𝐶) ; take (𝜌 = 8900 𝑘𝑔 𝑚3⁄ ), (𝑐𝑝 = 0.38 𝑘𝐽/

𝑘𝑔. °𝐶), (𝑘 = 370 𝑊/𝑚 · °𝐶) 𝑎𝑛𝑑 (ℎ = 90 𝑊/𝑚2. °C). 

2- A solid copper sphere of (10 cm) diameter initially at a temperature of (250 °𝐶) is 

suddenly immersed in a fluid at (50 °𝐶) . The convection heat transfer coefficient is 

(200 𝑊/𝑚2. °𝐶). Estimate the temperature of the copper block at  (𝑡 = 5 𝑚𝑖𝑛) after the 

immersion. Take(𝜌 = 8954 𝑘𝑔/𝑚3), ( 𝑐𝑝 = 383 𝐽/𝑘𝑔. °𝐶), 𝑎𝑛𝑑 (𝑘 = 386 𝑊/𝑚 · °𝐶). 

3- A (15 𝑚𝑚) diameter mild steel sphere (𝑘 = 42 𝑊/𝑚. °𝐶) is exposed to cooling air 

flow at (20 °𝐶) resulting in the convection coefficient (ℎ = 120 𝑊/𝑚2. °C). Determine 

the time required to cool the sphere from (550 °𝐶)  to (90 °C). Take (𝜌 =

7850 𝑘𝑔 𝑚3)⁄ , ( 𝑐𝑝 = 475 𝐽 𝑘𝑔⁄ . °𝐶), 𝑎𝑛𝑑( 𝛼 = 0.045 𝑚2/ℎ). 

4- A piece of aluminum weighing (6 kg) and initially at a temperature of (300 °𝐶) is 

suddenly immersed in a fluid at (20 °𝐶) . The convection heat transfer coefficient is 

(58 𝑊/𝑚2. °𝐶). Taking the aluminum as a sphere having the same weight as that given, 

estimate the time required to cool the aluminum to (90 °𝐶), using the lumped capacity 

method of analysis. Take (𝜌 = 2707 𝑘𝑔/𝑚3) 𝑎𝑛𝑑 (𝐶𝑝 = 896 𝐽/𝑘𝑔. °𝐶). 

5- A stainless steel rod (6.4 𝑚𝑚) in diameter is initially at a uniform temperature of (25 

°C) and is suddenly immersed in a liquid at (150 °𝐶) with (ℎ =  120 𝑊/𝑚2. °𝐶). Using 

the lumped capacity method of analysis, calculate the time necessary for the rod 

temperature to reach (120 °𝐶). Take (𝜌 = 7817 𝑘𝑔/𝑚3) 𝑎𝑛𝑑 (𝐶𝑝 = 460 𝐽/𝑘𝑔. °𝐶). 


