2.2 The Conduction Equation of Cylindrical Coordinates:

Figure (2.2) Differential Control Volume (dr.r $d \emptyset . d z$) for Conduction Analysis in Cylindrical Coordinates (r, \emptyset, z).

The general form of the heat flux vector, and hence of Fourier's law, is
$q_{r}^{\prime \prime}=-k \frac{\partial T}{\partial r}$
$q_{\varnothing}^{\prime \prime}=-\frac{k}{r} \frac{\partial T}{\partial \emptyset}$
$q_{z}^{\prime \prime}=-k \frac{\partial T}{\partial z}$
Applying an energy balance to the differential control volume of Figure (2.2) the following general form of the heat equation is obtained:
$\frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \emptyset}\left(k \frac{\partial T}{\partial \emptyset}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{q}=\rho C_{p} \frac{\partial T}{\partial t}$

The following forms under the specific condition:

CASE (1): One dimension and homogenous material (isotropic material).

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{\dot{q}}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}
$$

CASE (2): one dimension, steady state $(\partial / \partial t=0)$, homogenous material (isotropic material) and with heat generation.

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{\dot{q}}{k}=0
$$

CASE (3): one dimension, unsteady state, homogenous material (isotropic material) and without heat generation.

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)=\frac{1}{\alpha} \frac{\partial T}{\partial t}
$$

CASE (4): one dimension, steady-state $(\partial / \partial t=0)$, homogenous material (isotropic material) and without heat generation.

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)=0
$$

The solution of the heat equation is:
$q=-k A \frac{\partial T}{\partial r}=-2 \pi r L k \frac{\left(T_{i}-T_{0}\right)}{\ln \frac{r_{i}}{r_{0}}}=2 \pi r L k \frac{\left(T_{i}-T_{0}\right)}{\ln \frac{r_{0}}{r_{i}}}$
Example (2.3): consider a steam pipe of length (L), inner radius (r_{i}), outer radius (r_{0}) and thermal conductivity (k). The inner and outer surface of pipe are maintained at average temperature of $\left(T_{i}\right)$ and $\left(T_{0}\right)$ respectively. Obtain a general relation for the temperature distribution inside the pipe under steady conditions and determine the rate of heat loss from the steam through the pipe.

Solution:

Assumption:
1- Steady-state $(\partial / \partial t=0)$.
2- Homogenous material (isotropic material).
3- With heat generation.
$\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)=0 \quad$ multiply by r
$\frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)=0 \quad$ integrate

$r \frac{\partial T}{\partial r}=C_{1} \quad \rightarrow \quad \frac{\partial T}{\partial r}=\frac{C_{1}}{r}$
(1) integrate again
$T=C_{1} \ln r+C_{2}$
B.C1: at $r=r_{i} \quad T=T_{i} \quad$ sub.in Eq. (2)
$T_{i}=C_{1} \ln r_{i}+C_{2}$
B.C2: at $r=r_{0} \quad T=T_{0} \quad$ sub.in Eq. (2)
$T_{0}=C_{1} \ln r_{0}+C_{2}$
Subtract Eq. (3) and Eq. (4)
$T_{i}-T_{0}=C_{1} \ln \frac{r_{i}}{r_{0}}$
$C_{1}=\frac{T_{i}-T_{0}}{\ln \frac{r_{i}}{r_{0}}} \quad$ sub.in Eq.
$T_{i}=\frac{T_{i}-T_{0}}{\ln \frac{r_{i}}{r_{0}}} \ln r_{i}+C_{2}$
$C_{2}=T_{i}-\frac{T_{i}-T_{0}}{\ln \frac{r_{i}}{r_{0}}} \ln r_{i}$
Sub. C_{1} and C_{2} in Eq. (2)
$T=\frac{T_{i}-T_{0}}{\ln \frac{r_{i}}{r_{0}}} \ln r+T_{i}-\frac{T_{i}-T_{0}}{\ln \frac{r_{i}}{r_{0}}} \ln r_{i}$
$T=\frac{T_{i}-T_{0}}{\ln \frac{r_{i}}{r_{0}}} \ln \frac{r}{r_{i}}+T_{i}$
$q=-k A \frac{\partial T}{\partial r}=-k(2 \pi r L) \frac{C_{1}}{r}=-\frac{(2 \pi r L k)}{r} \frac{T_{i}-T_{0}}{\ln \frac{r_{i}}{r_{0}}}$
$q=-2 \pi L k \frac{\left(T_{i}-T_{0}\right)}{\ln \frac{r_{i}}{r_{0}}}$

Example(2.4): Uniform internal heat generation $\dot{q}=5 \times 10^{7} \mathrm{~W} / \mathrm{m}^{3}$ is occurring in a cylindrical nuclear reactor fuel rod of (50 mm) diameter, and under steady-state conditions, the temperature distribution is of the form $T(r)=a+b r^{2}$, where T is in degrees Celsius and r is in meters, while $a=800^{\circ} \mathrm{C}$ and $b=-4.167 \times 10^{5}{ }^{\circ} \mathrm{C} / \mathrm{m}^{2}$. The fuel rod properties are $k=30 \mathrm{~W} / \mathrm{m} . K, \rho=1100 \mathrm{~kg} / \mathrm{m}^{3}$ and $C_{p}=800 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$.
(a) What is the rate of heat transfer per unit length of the rod at $r=0$ (the centerline) and at $r=25 \mathrm{~mm}$ (the surface)?
(b) If the reactor power level is suddenly increased to $\dot{q}_{2}=10^{8} \mathrm{~W} / \mathrm{m}^{3}$, what is the initial time rate of temperature change at $r=0$ and $r=25 \mathrm{~mm}$?

Solution:

Assumptions:
1- One-dimensional conduction in the r direction.
2- Uniform generation.
3- Steady-state for $\dot{q}_{1}=5 \times 10^{7} \mathrm{~W} / \mathrm{m}^{3}$

(a) Steady-state centerline and surface heat transfer rates per unit length, $\left(q_{r}^{\prime}\right)$.
$q_{r}^{\prime \prime}=-k \frac{\partial T}{\partial r}$

$$
q_{r}=-k A_{r} \frac{\partial T}{\partial r}
$$

$q_{r}=-k(2 \pi r L) \frac{\partial T}{\partial r}$
$q_{r}^{\prime}=-k(2 \pi r) \frac{\partial T}{\partial r}$
at $r=0$
$\left.\frac{\partial T}{\partial r}\right]_{r=0}=2 b r=o$
$\therefore q_{r}^{\prime}=0$
at $r=r_{0}$
$\left.\frac{\partial T}{\partial r}\right]_{r=r_{0}}=-2 \times 4.167 \times 10^{5} r=-2 \times 4.167 \times 10^{5} r_{0}$
$\left.\frac{\partial T}{\partial r}\right]_{r=r_{0}}=-2 \times 4.167 \times 10^{5} \times 0.025$
$\left.\frac{\partial T}{\partial r}\right]_{r=r_{0}}=-0.208 \times 10^{5} \mathrm{~K} / \mathrm{m}$
$q_{r}^{\prime}=-k\left(2 \pi r_{0}\right) \frac{\partial T}{\partial r}=-30 * 2 \pi * 0.025 *-0.208 \times 10^{5}=0.98 \times 10^{5} \mathrm{~W} / \mathrm{m}$
(b) The initial time rate of change of the centerline and surface temperatures in response to a change in the generation rate from \dot{q}_{1} to $\dot{q}_{2}=10^{8} \frac{\mathrm{~W}}{\mathrm{~m}^{3}}$
$\frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial T}{\partial r}\right)+\dot{q}_{2}=\rho C_{p} \frac{\partial T}{\partial t}$
$\frac{\partial T}{\partial t}=\frac{1}{\rho C_{p}}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial T}{\partial r}\right)+\dot{q}_{2}\right]$
$\frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial T}{\partial r}\right)=\frac{k}{r} \frac{\partial}{\partial r}\left[r\left(-8.334 \times 10^{5} r\right)\right]=\frac{k}{r} \frac{\partial}{\partial r}\left[-8.334 \times 10^{5} r^{2}\right]$
$=\frac{k}{r}\left[-8.334 \times 10^{5} \times 2 r\right]=-16.668 \times 10^{5} k=-16.668 \times 10^{5} \times 30$
$\frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial T}{\partial r}\right)=-5 \times 10^{7} \frac{W}{m^{3}}$
sub.in Eq.(1)
$\frac{\partial T}{\partial t}=\frac{1}{1100 \times 800}\left[-5 \times 10^{7}+10^{8}\right]$
$\frac{\partial T}{\partial t}=56.82 \mathrm{~K} / \mathrm{s}$

