CHAPTER TWO

Introduction to Conduction

Conduction refers to the transport of energy in a medium due to a temperature gradient, and the physical mechanism is one of random atomic or molecular activity.

2.1 The Conduction Equation of Rectangular Coordinate:

Consider an element of small control volume $d V=d x d y d z$ as shown in Figure (2.1) and the temperature distribution $T(x, y, z, t)$ is expressed in Cartesian coordinates where (t) is the time.

Figure (2.1) Differential Control Volume ($d x d y d z$) for Conduction Analysis in Cartesian Coordinates.

The conduction heat rates perpendicular to each of the control surfaces at the x, y, and z coordinate locations are indicated by the terms q_{x}, q_{y}, and q_{z}, respectively.
$q_{x}=-k A \frac{\partial T}{\partial x}=-k d y d z \frac{\partial T}{\partial x}$
$q_{y}=-k A \frac{\partial T}{\partial y}=-k d x d z \frac{\partial T}{\partial y}$
$q_{z}=-k A \frac{\partial T}{\partial z}=-k d x d y \frac{\partial T}{\partial z}$

The conduction heat rates at the opposite surfaces can then be expressed as a Taylor series expansion where, neglecting higher order terms,
$q_{x+d x}=q_{x}+\frac{\partial q_{x}}{\partial x} d x$
$q_{y+d y}=q_{y}+\frac{\partial q_{y}}{\partial y} d y$
$q_{z+d z}=q_{z}+\frac{\partial q_{z}}{\partial z} d z$
Within the medium there may also be an energy source term associated with the rate of thermal energy generation. This term is represented as
$\dot{E}_{g}=\dot{q} V=\dot{q} d x d y d z$
where \dot{q} is the rate at which energy is generated per unit volume of the medium $\left(\mathrm{W} / \mathrm{m}^{3}\right)$.
In addition, there may occur changes in the amount of the internal thermal energy stored by the material in the control volume. If the material is not experiencing a change in phase, latent energy effects are not pertinent, and the energy storage term may be expressed as
$\dot{E}_{s t}=\dot{m} C_{p} \frac{\partial T}{\partial t}=\rho C_{p} V \frac{\partial T}{\partial t}=\rho C_{p} d x d y d z \frac{\partial T}{\partial t}$
Where
$\rho C_{p} \frac{\partial T}{\partial t}$ is the time rate of change of the sensible (thermal) energy of the medium per unit volume.
C_{p} is specific heat capacity $\left(\mathrm{J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}\right)$.
$\frac{\partial T}{\partial t}$ is the temperature change with time $(\mathrm{K} / \mathrm{s})$
V is the volume $\left(m^{3}\right)$.
ρ is the density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.
The general form of the conservation of energy requirement is
$\dot{E}_{\text {in }}+\dot{E}_{g}-\dot{E}_{\text {out }}=\dot{E}_{s t}$

Substitute Eq. (2.1) to (2.4) in Eq. (2.5) get
$\left(q_{x}+q_{y}+q_{z}\right)+\dot{q} d x d y d z-\left(q_{x+d x}+q_{y+d y}+q_{z+d z}\right)$

$$
\begin{equation*}
=C_{p} d x d y d z \frac{\partial T}{\partial t} \tag{2.6}
\end{equation*}
$$

$\dot{q} d x d y d z-\frac{\partial q_{x}}{\partial x} d x-\frac{\partial q_{y}}{\partial y} d y-\frac{\partial q_{z}}{\partial z} d z \partial t=\rho C_{p} d x d y d z \frac{\partial T}{\partial t}$
$\dot{q} d x d y d z-\frac{\partial}{\partial x}\left(-k d y d z \frac{\partial T}{\partial x}\right) d x-\frac{\partial}{\partial y}\left(-k d x d z \frac{\partial T}{\partial y}\right) d y$

$$
\begin{equation*}
-\frac{\partial}{\partial z}\left(-k d x d y \frac{\partial T}{\partial z}\right) d z \partial t=\rho C_{p} d x d y d z \frac{\partial T}{\partial t} \tag{2.8}
\end{equation*}
$$

Divided Eq. (2.8) by ($d x d y d z$) get the general equation for conduction in a rectangular coordinate system

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{q}=\rho C_{p} \frac{\partial T}{\partial t} \tag{2.9}
\end{equation*}
$$

The following forms under the specific condition:

CASE (1): For homogenous material (isotropic material)
$k=$ constant
$\frac{\partial}{\partial x}\left(\frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(\frac{\partial T}{\partial z}\right)+\frac{\dot{q}}{k}=\frac{\rho C_{p}}{k} \frac{\partial T}{\partial t}$
$\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}+\frac{\dot{q}}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$
Where $\alpha=\frac{k}{\rho c_{p}}=$ Thermal diffusivity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$
CASE (2): For steady-state $(\partial / \partial t=0)$, homogenous material $(k=$ constant $)$
$\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}+\frac{\dot{q}}{k}=\frac{1}{\phi} \frac{\partial T}{\partial t}$
$\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}+\frac{\dot{q}}{k}=0$

CASE (3): For steady-state, without heat generation and homogenous material
$\frac{\partial}{\partial t}=0$
$k=$ constant
$\dot{q}=0$
$\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}+\frac{\dot{q}}{\not k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$
$\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=0$
CASE (4): 2-Dimension, steady-state, homogenous material and without heat generation
$\frac{\partial}{\partial t}=0$
$\dot{q}=0$
$k=$ constant

$$
\frac{\partial}{\partial z}=0
$$

$\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} \hat{T}}{\partial z^{2}}+\frac{\dot{q} / k}{k}=\frac{1}{\partial} \frac{\partial T}{\partial t}$
$\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0$
CASE (5): One-Dimension, steady-state, homogenous material and without heat generation
$\frac{\partial}{\partial t}=0$,
$\frac{\partial}{\partial y}=0$
$\frac{\partial}{\partial z}=0$
$\frac{\partial^{2} T}{\partial x^{2}}=0$

We may use Fourier's law to determine the conduction heat transfer rate. That is
$q_{x}=-k A \frac{\partial T}{\partial x}=\frac{k A}{L}\left(T_{1}-T_{2}\right)$

Example (2.1): The temperature distribution across a wall (1m) thick at a certain instant of time is given as $T(x)=a+b x+c x^{2}$ where T is in degrees Celsius and x is in meters, while $=900^{\circ} \mathrm{C}, b=-300^{\circ} \mathrm{C} / \mathrm{m}$ and $c=-50^{\circ} \mathrm{C} / \mathrm{m}^{2}$. A uniform heat generation $\dot{q}=$ $1000 \mathrm{~W} / \mathrm{m}^{3}$ is present in the wall of area $10 \mathrm{~m}^{2}$ having the properties $\rho=1600 \mathrm{~kg} / \mathrm{m}^{3}$, $k=40 \mathrm{~W} / \mathrm{m} . \mathrm{K}$ and $C_{p}=4 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$.

1. Determine the rate of heat transfer entering the wall $(x=0)$ and leaving the wall $(x=1 \mathrm{~m})$.
2. Determine the rate of change of energy storage in the wall.
3. Determine the time rate of temperature change at $x=0,0.25$, and 0.5 m .

Solution:

Assumptions:
1- One-dimensional conduction in the x-direction.
2- Isotropic medium with constant properties.
3- Uniform internal heat generation,

$$
\left(\dot{q}=1000 \mathrm{~W} / \mathrm{m}^{3}\right) .
$$

1- Heat rates entering $q_{i n}(x=0)$ and leaving $q_{\text {out }}(x=1 m)$ the wall.

$q_{i n}=-\left.k A \frac{d T}{d x}\right|_{x=0}=-k A(b+2 c x)_{x=0}$
$q_{\text {in }}=-k A b$
$q_{\text {in }}=-40 * 10 *-300=120000 \mathrm{~W}=120 \mathrm{KW}$
$q_{\text {out }}=-\left.k A \frac{d T}{d x}\right|_{x=L}=-k A(b+2 c x)_{x=L}$
$q_{\text {out }}=-k A(b+2 c L)$
$q_{\text {out }}=40 * 10 *(-300+2 *-50 * 1)$
$q_{\text {out }}=160000 \mathrm{~W}=160 \mathrm{KW}$

2- Rate of change of energy storage in the wall $\dot{E}_{s t}$.

$$
\begin{aligned}
& \dot{E}_{\text {in }}+\dot{E}_{g}-\dot{E}_{\text {out }}=\dot{E}_{\text {st }} \\
& \text { Where } \dot{E}_{g}=\dot{q} V=\dot{E}_{g}=\dot{q} A L \\
& \dot{E}_{s t}=\dot{E}_{\text {in }}+\dot{E}_{g}-\dot{E}_{\text {out }}=\dot{E}_{\text {in }}+\dot{q} A L-\dot{E}_{\text {out }} \\
& \dot{E}_{\text {st }}=120000+1000 * 10 * 1-160000 \\
& \dot{E}_{s t}=-30000 \mathrm{~W}=-30 \mathrm{KW}
\end{aligned}
$$

3- Time rate of temperature change at $x=0,0.25$, and 0.5 m .

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=\frac{k}{\rho C_{p}} \frac{\partial^{2} T}{\partial x^{2}}+\frac{\dot{q}}{\rho C_{p}} \\
& \frac{\partial^{2} T}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial T}{\partial x}\right)=\frac{\partial}{\partial x}(b+2 c x)=2 c=2 *-50=-100^{\circ} \mathrm{C} / \mathrm{m}^{2} \\
& \frac{\partial T}{\partial t}=\frac{40}{1600 * 4} *(-100)+\frac{1000}{1600 * 4} \\
& \frac{\partial T}{\partial t}=-0.625+0.156=-0.468{ }^{\circ} \mathrm{C} / \mathrm{s} \quad \text { for } x=0,0.25 \text { and } 0.5
\end{aligned}
$$

Example (2.2): Consider the plane wall with uniformly distributed heat sources shown in Figure. The thickness of the wall in the x direction is $2 L$, and it is assumed that the dimensions in the other directions are sufficiently large that the heat flow may be considered as one dimensional. The heat generated per unit volume is \dot{q}, and assume that the thermal conductivity does not vary with temperature. Derive an expression of the temperature distribution.

Solution:

Assumption:
1- One-Dimension $\left(\frac{\partial}{\partial y}=0, \frac{\partial}{\partial z}=0\right)$.
2- Steady state $\left(\frac{\partial}{\partial t}=0\right)$
3- Uniform heat generation (\dot{q}).
4- Homogeneous ($k=$ constant).

$\frac{\partial^{2} T}{\partial x^{2}}+\frac{\dot{q}}{k}=0$
integrate
$\frac{\partial T}{\partial x}+\frac{\dot{q}}{k} x=C_{1}$
(1) integrate again
$T+\frac{\dot{q}}{k} x^{2}=C_{1} x+C_{2}$
$T=-\frac{\dot{q}}{2 k} x^{2}+C_{1} x+C_{2}$
B.C1: at $x=0 \quad T=T_{0} \quad$ Sub. in Eq. (2)
$T_{0}=-\frac{\dot{q}}{2 k}(0)^{2}+C_{1} * 0+C_{2}$
$C_{2}=T_{0}$
Sub. in Eq. (2)
B.C2: at $x= \pm L \quad T=T_{w} \quad$ Sub. in Eq. (2)
$T_{w}=-\frac{\dot{q}}{2 k} L^{2}+C_{1} L+T_{0}$
$T_{w}=-\frac{\dot{q}}{2 k} L^{2}-C_{1} L+T_{0}$
Subtract
$0=0+2 L C_{1}+0$
$C_{1}=0 \quad$ Sub.in Eq. (2)
$T=-\frac{\dot{q}}{2 k} x^{2}+T_{0}$
$T-T_{0}=-\frac{\dot{q}}{2 k} x^{2}$

