
    

      

Al-Mustaqbal University College                          1                        http://www.mustaqbal-college.edu.iq/ 

Class: 3rd  

Subject: Heat Transfer 
Lecturer: Dr. Athraa Al-Abbasi 

E-mail: Dr.AthraaHameed@mustaqbal-

college.edu.iq 

 

 

CHAPTER TWO 

Introduction to Conduction 
Conduction refers to the transport of energy in a medium due to a temperature 

gradient, and the physical mechanism is one of random atomic or molecular activity. 

2.1 The Conduction Equation of Rectangular Coordinate: 

Consider an element of small control volume 𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧 as shown in Figure 

(2.1) and the temperature distribution 𝑇(𝑥, 𝑦, 𝑧, 𝑡) is expressed in Cartesian coordinates 

where (t) is the time.  

Figure (2.1) Differential Control Volume ( 𝑑𝑥 𝑑𝑦 𝑑𝑧) for Conduction Analysis in 

Cartesian Coordinates. 

The conduction heat rates perpendicular to each of the control surfaces at the x, y, 

and z coordinate locations are indicated by the terms 𝑞𝑥, 𝑞𝑦, and 𝑞𝑧, respectively. 

𝑞𝑥 = −𝑘𝐴
𝜕𝑇

𝜕𝑥
= −𝑘𝑑𝑦𝑑𝑧

𝜕𝑇

𝜕𝑥
                                                                                            (2.1𝑎) 

𝑞𝑦 = −𝑘𝐴
𝜕𝑇

𝜕𝑦
= −𝑘𝑑𝑥𝑑𝑧

𝜕𝑇

𝜕𝑦
                                                                                             (2.1𝑏) 

𝑞𝑧 = −𝑘𝐴
𝜕𝑇

𝜕𝑧
= −𝑘𝑑𝑥𝑑𝑦

𝜕𝑇

𝜕𝑧
                                                                                             (2.1𝑐) 
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 The conduction heat rates at the opposite surfaces can then be expressed as a Taylor 

series expansion where, neglecting higher order terms, 

𝑞𝑥+𝑑𝑥 = 𝑞𝑥 +
𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥                                                                                                                 (2.2𝑎) 

𝑞𝑦+𝑑𝑦 = 𝑞𝑦 +
𝜕𝑞𝑦

𝜕𝑦
𝑑𝑦                                                                                                                (2.2𝑏) 

𝑞𝑧+𝑑𝑧 = 𝑞𝑧 +
𝜕𝑞𝑧

𝜕𝑧
𝑑𝑧                                                                                                                  (2.2𝑐) 

Within the medium there may also be an energy source term associated with the rate 

of thermal energy generation. This term is represented as 

�̇�𝑔 = �̇�𝑉 = �̇� 𝑑𝑥 𝑑𝑦 𝑑𝑧                                                                                                                 (2.3) 

where �̇� is the rate at which energy is generated per unit volume of the medium (W/m3 ).  

In addition, there may occur changes in the amount of the internal thermal energy 

stored by the material in the control volume. If the material is not experiencing a change in 

phase, latent energy effects are not pertinent, and the energy storage term may be 

expressed as 

�̇�𝑠𝑡 = �̇�𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝜌𝐶𝑝𝑉

𝜕𝑇

𝜕𝑡
= 𝜌𝐶𝑝 𝑑𝑥 𝑑𝑦 𝑑𝑧

𝜕𝑇

𝜕𝑡
                                                                (2.4) 

Where 

 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
 is the time rate of change of the sensible (thermal) energy of the medium per unit 

volume. 

𝐶𝑝 is specific heat capacity (J/kg. °C). 

𝜕𝑇

𝜕𝑡
 is the temperature change with time (K/s) 

V is the volume (𝑚3). 

𝜌 is the density (𝑘𝑔/𝑚3). 

The general form of the conservation of energy requirement is 

�̇�𝑖𝑛 + �̇�𝑔 − �̇�𝑜𝑢𝑡 = �̇�𝑠𝑡                                                                                                                 (2.5) 
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Substitute Eq. (2.1) to (2.4) in Eq. (2.5) get 

(𝑞𝑥 + 𝑞𝑦 + 𝑞𝑧) + �̇� 𝑑𝑥 𝑑𝑦 𝑑𝑧 − (𝑞𝑥+𝑑𝑥 + 𝑞𝑦+𝑑𝑦 + 𝑞𝑧+𝑑𝑧) 

= 𝐶𝑝 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝜕𝑇

𝜕𝑡
                            (2.6) 

�̇� 𝑑𝑥 𝑑𝑦 𝑑𝑧 −
𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥 −

𝜕𝑞𝑦

𝜕𝑦
𝑑𝑦 −

𝜕𝑞𝑧

𝜕𝑧
𝑑𝑧𝜕𝑡 = 𝜌𝐶𝑝 𝑑𝑥 𝑑𝑦 𝑑𝑧

𝜕𝑇

𝜕𝑡
                                      (2.7) 

�̇� 𝑑𝑥 𝑑𝑦 𝑑𝑧 −
𝜕

𝜕𝑥
(−𝑘𝑑𝑦𝑑𝑧

𝜕𝑇

𝜕𝑥
) 𝑑𝑥 −

𝜕

𝜕𝑦
(−𝑘𝑑𝑥𝑑𝑧

𝜕𝑇

𝜕𝑦
) 𝑑𝑦 

−
𝜕

𝜕𝑧
(−𝑘𝑑𝑥𝑑𝑦

𝜕𝑇

𝜕𝑧
) 𝑑𝑧𝜕𝑡 = 𝜌𝐶𝑝 𝑑𝑥 𝑑𝑦 𝑑𝑧

𝜕𝑇

𝜕𝑡
                             (2.8) 

Divided Eq. (2.8) by ( 𝑑𝑥 𝑑𝑦 𝑑𝑧 ) get the general equation for conduction in a 

rectangular coordinate system  

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + �̇� = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
                                                           (2.9) 

The following forms under the specific condition: 

CASE (1): For homogenous material (isotropic material) 

𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜕

𝜕𝑥
(

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(

𝜕𝑇

𝜕𝑧
) +

�̇�

𝑘
=

𝜌𝐶𝑝

𝑘

𝜕𝑇

𝜕𝑡
 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

�̇�

𝑘
=

1

𝛼

𝜕𝑇

𝜕𝑡
 

Where 𝛼 =
𝑘

𝜌𝐶𝑝
= 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 (𝑚2/𝑠) 

CASE (2): For steady-state (𝜕/𝜕𝑡 = 0), homogenous material (𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

�̇�

𝑘
=

1

𝛼

𝜕𝑇

𝜕𝑡
 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

�̇�

𝑘
= 0 
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CASE (3): For steady-state, without heat generation and homogenous material 

𝜕

𝜕𝑡
= 0                                       𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                     �̇� = 0 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

�̇�

𝑘
=

1

𝛼

𝜕𝑇

𝜕𝑡
 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
= 0 

CASE (4): 2-Dimension, steady-state, homogenous material and without heat generation 

𝜕

𝜕𝑡
= 0                                  �̇� = 0                      𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                       

𝜕

𝜕𝑧
= 0 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

�̇�

𝑘
=

1

𝛼

𝜕𝑇

𝜕𝑡
 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
= 0 

CASE (5): One-Dimension, steady-state, homogenous material and without heat 

generation 

𝜕

𝜕𝑡
= 0,                                       �̇� = 0,                         

𝜕

𝜕𝑦
= 0                               

𝜕

𝜕𝑧
= 0   

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

�̇�

𝑘
=

1

𝛼

𝜕𝑇

𝜕𝑡
 

𝜕2𝑇

𝜕𝑥2
= 0 

We may use Fourier’s law to determine the conduction heat transfer rate. That is 

𝑞𝑥 = −𝑘𝐴
𝜕𝑇

𝜕𝑥
=

𝑘𝐴

𝐿
(𝑇1 − 𝑇2) 
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Example (2.1): The temperature distribution across a wall (1m) thick at a certain instant 

of time is given as  𝑇(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 where T is in degrees Celsius and x is in meters, 

while  = 900 °𝐶, 𝑏 = −300 °𝐶/𝑚 𝑎𝑛𝑑 𝑐 = −50 °𝐶/𝑚2. A uniform heat generation �̇� =
1000 𝑊/𝑚3 is present in the wall of area 10 m2 having the properties 𝜌 = 1600 𝑘𝑔/𝑚3, 

𝑘 = 40 𝑊/𝑚. 𝐾 and 𝐶𝑝 = 4 𝑘𝐽/𝑘𝑔. 𝐾. 

1. Determine the rate of heat transfer entering the wall (𝑥 =  0) and leaving the wall  

(𝑥 = 1 𝑚). 
2. Determine the rate of change of energy storage in the wall. 

3. Determine the time rate of temperature change at 𝑥 =  0, 0.25, 𝑎𝑛𝑑 0.5 𝑚. 

Solution: 

Assumptions: 

1- One-dimensional conduction in the x-direction. 

2- Isotropic medium with constant properties. 

3- Uniform internal heat generation, 

(�̇� = 1000 𝑊/𝑚3). 

 

 

 

1- Heat rates entering 𝑞𝑖𝑛 (𝑥 = 0)  and leaving 

𝑞𝑜𝑢𝑡 (𝑥 = 1 𝑚) the wall. 

𝑞𝑖𝑛 = −𝑘𝐴
𝑑𝑇

𝑑𝑥
|

𝑥=0
= −𝑘𝐴(𝑏 + 2𝑐𝑥)𝑥=0 

𝑞𝑖𝑛 = −𝑘𝐴𝑏 

𝑞𝑖𝑛 = −40 ∗ 10 ∗ −300 = 120000 𝑊 = 120𝐾𝑊 

𝑞𝑜𝑢𝑡 = −𝑘𝐴
𝑑𝑇

𝑑𝑥
|

𝑥=𝐿
= −𝑘𝐴(𝑏 + 2𝑐𝑥)𝑥=𝐿 

𝑞𝑜𝑢𝑡 = −𝑘𝐴(𝑏 + 2𝑐𝐿) 

𝑞𝑜𝑢𝑡 = 40 ∗ 10 ∗ (−300 + 2 ∗ −50 ∗ 1) 

𝑞𝑜𝑢𝑡 = 160000 𝑊 = 160 𝐾𝑊 
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2- Rate of change of energy storage in the wall �̇�𝑠𝑡. 

�̇�𝑖𝑛 + �̇�𝑔 − �̇�𝑜𝑢𝑡 = �̇�𝑠𝑡 

Where �̇�𝑔 = �̇�𝑉 = �̇�𝑔 = �̇�𝐴𝐿 

�̇�𝑠𝑡 = �̇�𝑖𝑛 + �̇�𝑔 − �̇�𝑜𝑢𝑡 = �̇�𝑖𝑛 + �̇�𝐴𝐿 − �̇�𝑜𝑢𝑡 

�̇�𝑠𝑡 = 120000 + 1000 ∗ 10 ∗ 1 − 160000 

�̇�𝑠𝑡 = −30000 𝑊 = −30 𝐾𝑊 

 

3- Time rate of temperature change at 𝑥 = 0, 0.25, 𝑎𝑛𝑑 0.5 𝑚. 

𝜕𝑇

𝜕𝑡
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑥2
+

�̇�

𝜌𝐶𝑝
 

𝜕2𝑇

𝜕𝑥2
=

𝜕

𝜕𝑥
(

𝜕𝑇

𝜕𝑥
) =

𝜕

𝜕𝑥
(𝑏 + 2𝑐𝑥) = 2𝑐 = 2 ∗ −50 = −100 °𝐶/𝑚2 

𝜕𝑇

𝜕𝑡
=

40

1600 ∗ 4
∗ (−100) +

1000

1600 ∗ 4
 

𝜕𝑇

𝜕𝑡
= −0.625 + 0.156 = −0.468 °𝐶/𝑠      𝑓𝑜𝑟 𝑥 = 0, 0.25 𝑎𝑛𝑑 0.5 

Example (2.2): Consider the plane wall with uniformly 

distributed heat sources shown in Figure. The thickness 

of the wall in the x direction is 2L, and it is assumed that 

the dimensions in the other directions are sufficiently 

large that the heat flow may be considered as one 

dimensional. The heat generated per unit volume is �̇� , 

and assume that the thermal conductivity does not vary 

with temperature. Derive an expression of the 

temperature distribution. 

Solution: 

Assumption: 

1- One-Dimension (
𝜕

𝜕𝑦
= 0,

𝜕

𝜕𝑧
= 0). 

2- Steady state (
𝜕

𝜕𝑡
= 0) 

3- Uniform heat generation (�̇�). 

4- Homogeneous (𝑘= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). 
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𝜕2𝑇

𝜕𝑥2
+

�̇�

𝑘
= 0                          𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 

𝜕𝑇

𝜕𝑥
+

�̇�

𝑘
𝑥 = 𝐶1                                                     (1)    𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 𝑎𝑔𝑎𝑖𝑛 

𝑇 +
�̇�

𝑘
𝑥2 = 𝐶1𝑥 + 𝐶2  

𝑇 = −
�̇�

2𝑘
𝑥2 + 𝐶1𝑥 + 𝐶2                                     (2) 

B.C1: 𝑎𝑡 𝑥 = 0                          𝑇 = 𝑇0      Sub. in Eq. (2) 

𝑇0 = −
�̇�

2𝑘
(0)2 + 𝐶1 ∗ 0 + 𝐶2 

𝐶2 = 𝑇0                Sub. in Eq. (2) 

B.C2: 𝑎𝑡 𝑥 = ±𝐿                      𝑇 = 𝑇𝑤    Sub. in Eq. (2) 

𝑇𝑤 = −
�̇�

2𝑘
𝐿2 + 𝐶1𝐿 + 𝑇0                                     (3) 

𝑇𝑤 = −
�̇�

2𝑘
𝐿2 − 𝐶1𝐿 + 𝑇0                                     (4) 

                                   Subtract 

0 = 0 + 2𝐿𝐶1 + 0 

𝐶1 = 0                       Sub. in Eq. (2) 

𝑇 = −
�̇�

2𝑘
𝑥2 + 𝑇0 

𝑇 − 𝑇0 = −
�̇�

2𝑘
𝑥2                                                (5) 

  


