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CHAPTER FOUR 

Two Dimensional, Steady State Conduction 

For two dimensional, steady state conditions with no generation and constant 

thermal conductivity, the general conduction equation reduces to 

 

Methods for solving Eq. (4.1) include the use of 

1- Analytical method. 

2-  Graphical method. 

3-  Numerical method (finite difference, finite element, or boundary element). 

The best alternative is often one that uses a numerical technique 

For two-dimensional problems involve complicated geometries and/or boundary 

conditions, the best alternative is often one that uses a numerical technique. 

 

4.1 Numerical method 

4.1.1 Finite Difference Form of the Heat Equation 

Consider a two dimensional body that is to be divided into equal increments in both the 

x and y directions, as shown in Figure (4.1). The nodal points are designated as shown, the 

(m) locations indicating the x increment and the (n) locations indicating the y increment. 

We wish to establish the temperatures at any of these nodal points within the body, using 

Eq. (4.1) as a governing condition. Finite differences are used to approximate differential 

increments in the temperature and space coordinates; and the smaller we choose these 

finite increments, the more closely the true temperature distribution will be approximated. 

A numerical solution enables determination of the temperature at only discrete points. 

The first step in any numerical analysis must therefore be to select these points. Referring 

to Figure (4.1), this may be done by subdividing the medium of interest into a number of 

small regions and assigning to each a reference point that is at its center. The reference 

point is frequently termed a nodal point (or simply a node), and the aggregate of points is 
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termed a nodal network, grid, or mesh. The nodal points are designated by a numbering 

scheme that, for a two dimensional system, may take the form shown in Figure (4.1 a). 

The x and y locations are designated by the m and n indices, respectively. 

 

 

 

Figure (4.1) Two dimensional conduction. (a) Nodal network. (b) Finite difference 

approximation. 

The temperature gradients may be written as follows: 
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Substitute Eq’s from Eq. (4.6) and Eq. (4.7) in to Eq. (4.1) get 

 

If ∆𝑥 = ∆𝑦 , then 

 

Example (4.1): Use the numerical method to write the finite difference equation for each 

node that shown in Figure  

 

Solution: 

100 + 𝑇2 + +500 + 𝑇3 − 4𝑇1 = 0                   (1) 

𝑇1 + 100 + 500 + 𝑇4 − 4𝑇2 = 0                       (2) 

100 + 𝑇4 + 𝑇1 + 100 − 4𝑇3 = 0                       (3) 

𝑇3 + 100 + 𝑇2 + 100 − 4𝑇4 = 0                       (4) 

 

4.1.2 The Energy Balance Method 

In the energy balance method, the finite difference equation for a node is obtained by 

applying conservation of energy to a control volume about the nodal region. 

Since the actual direction of heat flow (into or out of the node) is often unknown, it is 

convenient to formulate the energy balance by assuming that all the heat flow is into the 

node. Such a condition is, of course, impossible, but if the rate equations are expressed in a 

manner consistent with this assumption, the correct form of the finite difference equation 

is obtained. For steady state conditions with generation. 
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Consider applying Eq. (4.9) to a control volume about the interior node (m, n) of Figure 

(4.2). For two dimensional conditions, energy exchange is influenced by 

 
  Figure (4.2) Conduction to an Interior Node from its Adjoining Nodes. 

∑ 𝑞𝑖→(𝑚,𝑛)

4

𝑖=1

+ �̇�(∆𝑥 ∗ ∆𝑦 ∗ 1) = 0                   (4.10) 

where i refers to the neighboring nodes, 𝑞(𝑖)→(𝑚,𝑛) is the conduction rate between nodes, 

and unit depth is assumed. 

To evaluate the conduction rate terms, we assume that conduction transfer occurs 

exclusively through lanes that are oriented in either the x or y direction. Simplified forms 

of Fourier’s law may therefore be used. 

For example, the rate at which energy is transferred by conduction from node (m-1, n) to 

(m, n) may be expressed as 

 

where ( ∆𝑦. 1) is the heat transfer area. 

(𝑇𝑚−1,𝑛 − 𝑇𝑚,𝑛)/ ∆𝑥 is the finite difference approximation to the temperature gradient at 

the boundary between the two nodes. 

  



    

      

Al-Mustaqbal University College                          5                        http://www.mustaqbal-college.edu.iq/ 

Class: 3rd  

Subject: Heat Transfer 
Lecturer: Dr. Athraa Al-Abbasi 

E-mail: Dr.AthraaHameed@mustaqbal-

college.edu.iq 

 

 

The remaining conduction rates may be expressed as 

 

Substitute Eq’s from Eq. (4.11) to Eq. (4.14) into Eq. (4.10), so that the finite difference 

equation for an interior node with generation is 

 

 
 

When the solid is exposed to some convection boundary condition, the temperatures 

at the surface must be computed differently from the method given above. Consider the 

boundary shown in Figure (4.3). The energy balance on node (m, n) is 

 
 Figure (4.3) Nomenclature for Nodal Equation with Convective Boundary Condition. 
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𝑄𝑐𝑜𝑛𝑑 = 𝑄𝑐𝑜𝑛𝑣 

𝑘∆𝑦
(𝑇𝑚−1,𝑛 − 𝑇𝑚,𝑛)

∆𝑥
+ 𝑘

∆𝑥

2

(𝑇𝑚,𝑛+1 − 𝑇𝑚,𝑛)

∆𝑦
+ 𝑘

∆𝑥

2

(𝑇𝑚,𝑛−1 − 𝑇𝑚,𝑛)

∆𝑦
= ℎ∆𝑦(𝑇𝑚,𝑛 − 𝑇∞) 

For ∆𝑥 = ∆ 𝑦, and multiply by (2/𝑘) the boundary temperature is expressed in the 

equation 

2(𝑇𝑚−1,𝑛 − 𝑇𝑚,𝑛) + (𝑇𝑚,𝑛+1 − 𝑇𝑚,𝑛) + (𝑇𝑚,𝑛−1 − 𝑇𝑚,𝑛) =
2ℎ∆𝑥

𝑘
(𝑇𝑚,𝑛 − 𝑇∞) 

2𝑇𝑚−1,𝑛 − 2𝑇𝑚,𝑛 + 𝑇𝑚,𝑛+1 − 𝑇𝑚,𝑛 + 𝑇𝑚,𝑛−1 − 𝑇𝑚,𝑛 =
2ℎ∆𝑥

𝑘
(𝑇𝑚,𝑛 − 𝑇∞) 

2𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛+1 + 𝑇𝑚,𝑛−1 + (−2 − 1 − 1)𝑇𝑚,𝑛 =
2ℎ∆𝑥

𝑘
(𝑇𝑚,𝑛 − 𝑇∞) 

2𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛+1 + 𝑇𝑚,𝑛−1 − 4𝑇𝑚,𝑛 −
2ℎ∆𝑥

𝑘
(𝑇𝑚,𝑛 − 𝑇∞) = 0 

2𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛+1 + 𝑇𝑚,𝑛−1 − 4𝑇𝑚,𝑛 −
2ℎ∆𝑥

𝑘
𝑇𝑚,𝑛 +

2ℎ∆𝑥

𝑘
𝑇∞ = 0 

 

Eq. (4.17) applies to a plane surface exposed to a convection boundary condition. It will 

not apply for other situations, such as an insulated wall or a corner exposed to a 

convection boundary condition. 

 Consider the corner section shown in Figure (4.4). The energy balance for the corner 

section is 

 

Figure (4.4) Nomenclature for Nodal Equation with Convection at a Corner Section 
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𝑄𝑐𝑜𝑛𝑑 = 𝑄𝑐𝑜𝑛𝑣 

𝑘
∆𝑦

2

(𝑇𝑚−1,𝑛 − 𝑇𝑚,𝑛)

∆𝑥
+ 𝑘

∆𝑥

2

(𝑇𝑚,𝑛−1 − 𝑇𝑚,𝑛)

∆𝑦
= ℎ

∆𝑥

2
(𝑇𝑚,𝑛 − 𝑇∞) + ℎ

∆𝑦

2
(𝑇𝑚,𝑛 − 𝑇∞) 

For ∆𝑥 = ∆ 𝑦 and multiply by (2/𝑘) the boundary temperature is expressed in the 

equation 

𝑇𝑚−1,𝑛 − 𝑇𝑚,𝑛 + 𝑇𝑚,𝑛−1 − 𝑇𝑚,𝑛 =
ℎ∆𝑥

𝑘
(𝑇𝑚,𝑛 − 𝑇∞) +

ℎ∆𝑥

𝑘
(𝑇𝑚,𝑛 − 𝑇∞) 

𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛−1 − 2𝑇𝑚,𝑛 = 2
ℎ∆𝑥

𝑘
(𝑇𝑚,𝑛 − 𝑇∞) 

𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛−1 − 2𝑇𝑚,𝑛 − 2
ℎ∆𝑥

𝑘
(𝑇𝑚,𝑛 − 𝑇∞) = 0 

𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛−1 − 2𝑇𝑚,𝑛 − 2
ℎ∆𝑥

𝑘
𝑇𝑚,𝑛 + 2

ℎ∆𝑥

𝑘
𝑇∞ = 0 

𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛−1 + 2
ℎ∆𝑥

𝑘
𝑇∞ − (2

ℎ∆𝑥

𝑘
+ 2)𝑇𝑚,𝑛 = 0 
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Configuration Finite Difference Equation for ∆𝒙 = ∆ 𝒚 

 

CASE (1) Interior node 

 

 

 

CASE (2) Node at an external corner with convection 
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CASE (3) Node at an internal corner with convection 

 

 

 

CASE (4) Node at a plane surface with convection 

 

 
Note: To obtain the finite difference equation for an adiabatic surface (or surface of 

symmetry), simply set )h( equal to zero. 
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CASE (5) Node at a plane surface with uniform heat flux 

 

 
Note: To obtain the finite difference equation for an adiabatic surface (or surface of 

symmetry), simply set (q" ) equal to zero. 

 

CASE (6) Insulated boundary 
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Example (4.2): Using the energy balance method, derive the finite difference equation for 

the (m, n) nodal point located on a plane, insulated surface of a medium with uniform heat 

generation. 

Solution: 

Assumptions:  

1. Steady-state conditions.  

2. Two dimensional conduction. 

3. Constant properties. 

4. Uniform internal heat generation. 

 

 

Substituting into Eq. (1) and dividing by k/2, it follows that 

     for ∆𝑥 = ∆𝑦 

2𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛−1 + 𝑇𝑚,𝑛+1 − 4𝑇𝑚,𝑛 +
�̇�∆𝑥2

𝑘
= 0 
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4.2 Solving the Finite Difference Equations 

As examples of the direct and iterative methods to solve the finite difference 

equation is 

1- Matrix inversion. 

2- Gauss Seidel iteration. 

4.2.1 The Matrix Inversion Method 

Consider a system of N finite-difference equations corresponding to (N) unknown 

temperatures. Identifying the nodes by a single integer subscript, rather than by the double 

subscript (m, n), the procedure for performing a matrix inversion begins by expressing the 

equations as 

 

where the quantities 𝑎11, 𝑎12, . . . , 𝐶1, . ..  are known coefficients and constants involving 

quantities such as ∆𝑥, 𝑘, ℎ, 𝑎𝑛𝑑 𝑇∞ . Using matrix notation, these equations may be 

expressed as 

 

where 
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The solution of Eq. (4.19) be expressed as 

 

where [A]-1 is the inverse of [A] and is defined as 

 

Evaluating the right hand side of Eq. (4.20), it follows that 
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Example (4.3): Steady state temperatures (K) at 

three nodal points of a long rectangular rod are as 

shown. The rod experiences a uniform volumetric 

generation rate of (5 × 107 𝑊/𝑚3)  and has a 

thermal conductivity of (20 W/m. K). Two of its sides 

are maintained at a constant temperature of (300 K), 

while the others are insulated. Determine the 

temperatures at nodes 1, 2, and 3. 

Solution: 

 

Node (A) to find T2 

Node at an external corner without convection (i.e h=0) and with heat generation (i. e 

added the term (�̇�𝑉 𝑘⁄ ) to the equation) 

𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛−1 − 2𝑇𝑚,𝑛 +
�̇�𝑉

𝑘
= 0 

∆𝑥 = ∆𝑦 

𝑉 =
∆𝑥

2
∗

∆𝑦

2
∗ 1 =

∆𝑥2

4
 

𝑇𝑚−1,𝑛 + 𝑇𝑚,𝑛−1 − 2𝑇𝑚,𝑛 +
�̇�∆𝑥2

4𝑘
= 0 

𝑇2 + 𝑇𝐵 − 2𝑇𝐴 +
�̇�∆𝑥2

4𝑘
= 0 

𝑇2 = 2𝑇𝐴 − 𝑇𝐵 −
�̇�∆𝑥2

4𝑘
 

𝑇2 = 2 ∗ 398 − 374.6 −
5 × 107 ∗ (0.005)2

4 ∗ 20
 

𝑇2 = 405.77 𝐾 
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Node (3) to find T3 

Interior node with heat generation (i. e added the term (�̇�𝑉 𝑘⁄ ) to the equation) 

𝑇𝑚−1,𝑛 + 𝑇𝑚+1,𝑛 + 𝑇𝑚,𝑛−1 + 𝑇𝑚,𝑛+1 − 4𝑇𝑚,𝑛 +
�̇�𝑉

𝑘
= 0 

∆𝑥 = ∆𝑦 

𝑉 = ∆𝑥 ∗ ∆𝑦 ∗ 1 = ∆𝑥2 

𝑇𝑚−1,𝑛 + 𝑇𝑚+1,𝑛 + 𝑇𝑚,𝑛−1 + 𝑇𝑚,𝑛+1 − 4𝑇𝑚,𝑛 +
�̇�∆𝑥2

𝑘
= 0 

𝑇𝐶 + 𝑇𝐵 + 300 + 𝑇2 − 4𝑇3 +
�̇�∆𝑥2

𝑘
= 0 

𝑇3 =
1

4
(𝑇𝐶 + 𝑇𝐵 + 300 + 𝑇2 +

�̇�∆𝑥2

𝑘
) 

𝑇3 =
1

4
(348.5 + 374.6 + 300 + 405.77 +

5 × 107 ∗ (0.005)2

20
) 

𝑇3 = 372.84 𝐾 

Node (1) to find T1 

Insulated boundary with heat generation (i. e added the term (�̇�𝑉 𝑘⁄ ) to the equation) 

𝑇𝑚−1,𝑛 + 𝑇𝑚+1,𝑛 + 2𝑇𝑚,𝑛−1 − 4𝑇𝑚,𝑛 +
�̇�𝑉

𝑘
= 0 

∆𝑥 = ∆𝑦 

𝑉 = ∆𝑥 ∗
∆𝑦

2
∗ 1 =

∆𝑥2

2
 

𝑇𝑚−1,𝑛 + 𝑇𝑚+1,𝑛 + 2𝑇𝑚,𝑛−1 − 4𝑇𝑚,𝑛 +
�̇�∆𝑥2

2𝑘
= 0 

300 + 𝑇2 + 2𝑇𝐶 − 4𝑇1 +
�̇�∆𝑥2

2𝑘
= 0 

𝑇1 =
1

4
(300 + 𝑇2 + 2𝑇𝐶 +

�̇�∆𝑥2

2𝑘
) 

𝑇1 =
1

4
(300 + 405.77 + 2 ∗ 348.5 +

5 × 107 ∗ (0.005)2

2 ∗ 20
) 

𝑇1 = 358.5 𝐾 
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Home Work (4): 

1- Show that the nodal equation corresponding to an insulated wall shown in Figure below 

is 𝑇𝑚,𝑛+1 + 𝑇𝑚,𝑛−1 + 2𝑇𝑚−1,𝑛 − 4𝑇𝑚,𝑛  =  0 

 
2- For the insulated corner section shown in Figure below, derive an expression for the 

nodal equation of node (m, n) under steady-state conditions. 

 
3- In Figure below calculate the temperatures at points 1, 2 and 3 take 𝑇4 = 413 ℃ using 

the numerical method. 
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4- Steady state temperatures at selected nodal points of the symmetrical section of a flow 

channel are known to be (𝑇2 =  95.47 ℃), (𝑇3 =  117.3 ℃), (𝑇5 = 79.79 ℃ , (𝑇6 =

77.29 ℃),  (𝑇8 =  87.28 ℃), 𝑎𝑛𝑑 (𝑇10 = 77.65 ℃) . The wall experiences uniform 

volumetric heat generation of ( 106 𝑊/𝑚3 ) and has a thermal conductivity of (𝑘 =

 10 𝑊/𝑚. 𝐾). The inner and outer surfaces of the channel experience convection with 

fluid temperatures of (𝑇∞,𝑖  =  50 ℃) and (𝑇∞,𝑜 =  25 ℃) and convection coefficients of 

(ℎ𝑖 = 500 𝑊/𝑚2 . 𝐾) and (ℎ0 = 250 𝑊/𝑚2 . 𝐾). 

(a) Determine the temperatures at nodes 1, 4, 7, and 9. 

(b) Calculate the heat rate per unit length (W/m) from the outer surface A to the adjacent 

fluid. 

(c) Calculate the heat rate per unit length from the inner fluid to surface B. 

 
 

5- Consider the network for a two-dimensional system without internal volumetric 

generation having nodal temperatures shown below. If the grid space is (125 mm) and the 

thermal conductivity of the material is (50 W/m. K), calculate the heat rate per unit length 

normal to the page from the isothermal surface (Ts). 

 


