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Figure E3.2¢, d The same seven points fitted by curves two different ways.

3.2 VARYING-VOLUME BATCH REACTOR

These reactors are much more complex than the simple constant-volume batch
reactor. Their main use would be in the microprocessing field where a capillary
tube with a movable bead would represent the reactor (see Fig. 3.20).

The progress of the reaction is followed by noting the movement of the bead
with time, a much simpler procedure than trying to measure the composition of
the mixture, especially for microreactors. Thus,

V, = initial volume of the reactor

V = the volume at time t.
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Reactor Movable bead

Figure 3.20 A varying-volume batch reactor.

This kind of reactor can be used for isothermal constant pressure operations, of
reactions having a single stoichiometry. For such systems the volume is linearly
related to the conversion, or

Lk iy anall V-V,
Jsaill e V=V(1+e,X,) or X,= v (63a)
DS A e DA
or
dv
dX, = e (63b)

where g, is the fractional change in volume of the system between no conversion
and complete conversion of reactant A. Thus

VXA=1 - VXA=0
EA T

(64)

As an example of the use of &, consider the isothermal gas-phase reaction
A—4R

By starting with pure reactant A,

but with 50% inerts present at the start, two volumes of reactant mixture yield,
on complete conversion, five volumes of product mixture. In this case
inerts J) (e 2aly Jse abls A (e dse S
3 =2 % 50 Jl a8
ea=—7—=15 )

2

We see, then, that &, accounts for both the reaction stoichiometry and the
presence of inerts. Noting that

Ny = Np(1 — X,) (65)
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we have, on combining with Eq. 63,

o N NyU-X) . 1-X,
A V V0(1+8AXA) A01+8AXA
Thus
CA_ 1—XA l—CA/CAU

or

(66)

o SR

which is the relationship between conversion and concentration for isothermal
varying-volume (or varying-density) systems satisfying the linearity assumption
of Eq. 63.

The rate of reaction (disappearance of component A), is, in general

Replacing V from Eq. 63a and N, from Eq. 65 we end up with the rate in terms
of the conversion

= Cho dX,
AT (1 + 8AXA) dt

or in terms of volume, from Egs. 63

o = Cao dV_Cyy d(InV)
AT Ve, dt e, dt

(67)

Differential Method of Analysis

The procedure for differential analysis of isothermal varying volume data is the
same as for the constant-volume situation except that we replace

£§A with ﬁd_V QM

dt Ve, dt O e, dr (68)

This means plot In V vs. ¢ and take slopes.

Integral Method of Analysis

Unfortunately, only a few of the simpler rate forms integrate to give manageable
V vs. t expressions. Let us look at these.
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Zero-Order Reactions For a homogeneous zero-order reaction the rate of
change of any reactant A is independent of the concentration of materials, or

. CA() d(ln V) _
AT gy dt =k (69)
Integrating gives
Cpo, V
——In—=
o n Ve kt (70)

As shown in Fig. 3.21, the logarithm of the fractional change in volume versus
time yields a straight line of slope ke,/C,g.

First-Order Reactions. For a unimolecular-type first-order reaction the rate of
change of reactant A is

. _Cppd(InV) _ B (1—XA>
AT LN dt B kCA B kCAO 1+ SAXA (71)
Replacing X, by V from Egs. 63 and integrating gives
AV
—In (1 - SAVo) =kt, AV=V -V, (72)

A semilogarithmic plot of Eq. 72, as shown in Fig. 3.22, yields a straight line of
slope k.

Second-Order Reactions. For a bimolecular-type second-order reaction

2A — products

\ Slope = ﬂ

Cho

v “_ Eq.70

In Vo forep >0
0 " > t
Slope = A
Cho
[ )
Eq. 70 A
forepa <0 °

Figure 3.21 Test for a homogeneous zero-order reaction, Eq. 69,
in a constant-pressure, varying volume reactor.
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Figure 3.22 Test for a first-order reaction, Eq. 71,
in a constant-pressure, varying-volume reactor.

or

A + B —products, with C,,= Cy

the rate is given by

r =§égdan
A €A dt

1— X, \?
= 2 = 2 (A
kC4 kCA0<1+8AXA>

Replacing X, by V from Egs. 63 and then integrating gives, after much algebraic
manipulation,

(1+e4) AV AV Y\
Vien — AV tealntl Vier) kC ot (73)

Figure 3.23 shows how to test for those kinetics.

)
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Eq. 73
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(1+ SA)AV
VosA b AV

o
Y

o

t

Figure 3.23 Test for the second-order
reaction, Eq. 73, in a constant-pressure,
varying-volume reactor.
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nth-Order and Other Reactions. For all rate forms other than zero-, first-, and
second-order the integral method of analysis is not useful.

3.3 TEMPERATURE AND REACTION RATE

So far we have examined the effect of concentration of reactants and products
on the rate of reaction, all at a given temperature level. To obtain the complete
rate equation, we also need to know the role of temperature on reaction rate.
Now in a typical rate equation we have

__1dN, _
ra= =t = kF(C)

and it is the reaction rate constant, the concentration-independent term, which
is affected by the temperature, whereas the concentration-dependent terms f(C)
usually remain unchanged at different temperatures.

Chemical theory predicts that the rate constant should be temperature-depen-
dent in the following manner:

k o Tme-E/RT

However, since the exponential term is much more temperature-sensitive than
the power term, we can reasonably consider the rate constants to vary approxi-
mately as e F/RT,

Thus, after finding the concentration dependency of the reaction rate, we can
then examine for the variation of the rate constant with temperature by an
Arrhenius-type relationship

k= ke ®RT E= [;}(ﬁ] (2.34) or (74)

This is conveniently determined by plotting In k versus 1/7, as shown in Fig. 3.24.
If the rate constant is found at two different temperatures we have from
Chap. 2,

k, E|1 1 _RI\T, K
n—== [ ] or E= T, T, In k, (2.35) or (75)

In k

Y

ur

Figure 3.24 Temperature dependency of a reaction
according to Arrhenius’ law.
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Finally, as mentioned in Chap. 2, a shift in E with temperature reflects a change
in controlling mechanism of reaction. Since this is likely to be accompanied by
a change in concentration dependency, this possibility should also be examined.

Warning on Using Pressure Measures. When dealing with gases, engineers and
chemists often measure compositions in terms of partial and total pressures, and
then develop their rate equations in terms of pressures, without realizing that
this can lead to problems. The reason is that the activation energy calculated
when using these units is incorrect. Let us illustrate.

CORRECT AND INCORRECT E VALUES

Experimental studies of a specific decomposition of A in a batch reactor using
pressure units show exactly the same rate at two different temperatures:

atd00K —r, =23pi —ry = [m"l ]
where

m3-s
at500K —-r, =23pi
Pa = [atm]

(a) Evaluate the activation using these units
(b) Transform the rate expressions into concentration units and then evaluate
the activation energy.

The pressure is not excessive, so the ideal gas law can be used.
SOLUTION

(a) Using Pressure Units. We see right away that a change in temperature
does not affect the rate of reaction. This means that

E=0
Alternatively, we can find E by going through the calculations. Thus

k, 23
nkl—ln2.3—0

hence replacing in Eq. 75 shows that
E=0

(b) Transform p, into C,, then find E. First write the rate equations with
all units shown:

—Ta,

mol _ <2 3 mol

ol __mol \,.» 2
m3-s ' ’m3-s-atm2)(pA’atm)
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Next change p, to C,. From ideal gas law
AT
PA=7, RT = C,RT

Combining the two preceding equations

—ry = 23CLR2T?

At 400 K
= 23—0L 2 (8506 % 10-s Al 2(4001()2
AT Sd s atm? A ’ mol - K
m3
=0.0025C3 where k, = 0.0025
mol s

At 500 K, similarly

3

~rjp=0.0039C%  where &, =0.0039 ———

Here we see that in concentration units the rate constants are not indepen-
dent of temperature. Evaluating the activation energy from Eq. 75, and
replacing numbers gives

_ (8.314)(400)(500) In 0.0039

E 500 — 400 0.0025

or

E = 7394 J
mol

This example shows that E values differ when either p or C used to
measure concentrations of materials. .

Final Notes

1. Chemistry (collision theory or transition state theory) has developed the

equations for reaction rates and activation energies in terms of concen-
tration.

. Literature tabulations for E and —r, for homogeneous reactions are nor-

mally based on concentrations. The clue to this is that the units for the
rate constant are often s, liter/mol - s, etc., without pressure appearing in
the units.
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3. Itis a good idea when making runs at different temperatures first to change
all p values to C values by using the relationships

pa = CART for ideal gases

pa =zC,RT  fornonideal gases, where z = compressibility factor

and then proceed to solve the problem. This will avoid confusion on units
later on, especially if the reaction is reversible or involves liquids and/or
solids as well as gases.

34 THE SEARCH FOR A RATE EQUATION

In searching for a rate equation and mechanism to fit a set of experimental data,
we would like answers to two questions:

1. Have we the correct mechanism and corresponding type of rate equation?
2. Once we have the right form of rate equation, do we have the best values
for the rate constants in the equation?

The difficult question to answer is the first of the preceding two questions. Let
us see why this is so.

Suppose we have a set of data and we wish to find out whether any one of
the families of curves—parabolas, cubics, hyperbolas, exponentials, etc., each
representing a different rate family—really fits these data better than any other.
This question cannot be answered simply; neither can high-powered mathemati-
cal or statistical methods help in deciding for us. The one exception to this
conclusion occurs when one of the families being compared is a straight line.
For this situation we can simply, consistently, and fairly reliably tell whether the
straight line does not reasonably fit the data. Thus, we have what is essentially
a negative test, one that allows us to reject a straight line family when there is
sufficient evidence against it.

All the rate equations in this chapter were manipulated mathematically into
a linearized form because of this particular property of the family of straight
lines that allows it to be tested and rejected.

Three methods are commonly used to test for the linearity of a set of points.
These are as follows:

Calculation of k from Individual Data Points. With a rate equation at hand,
the rate constant can be found for each experimental point by either the integral
or differential method. If no trend in k values is discernible, the rate equation
is considered to be satisfactory and the k values are averaged.

Now the k values calculated this way are the slopes of lines joining the individ-
ual points to the origin. So for the same magnitude of scatter on the graph the
k values calculated for points near the origin (low conversion) will vary widely,
whereas those calculated for points far from the origin will show little variation
(Fig. 3.25). This fact can make it difficult to decide whether k is constant and,
if so, what is its best mean value.
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Figure 3.25 How the location of the experimental points influences the
scatter in calculated k values.

Calculation of k from Pairs of Data Points. & values can be calculated from
successive pairs of experimental points. For large data scatter, however, or for
points close together, this procedure will give widely different k values from
which k.., will be difficult to determine. In fact, finding k,,, by this procedure
for points located at equal intervals on the x-axis is equivalent to considering
only the two extreme data points while ignoring all the data points in between.
This fact can easily be verified. Figure 3.26 illustrates this procedure.

This is a poor method in all respects and is not recommended for testing the
linearity of data or for finding mean values of rate constants.

Graphical Method of Fitting Data. Actually, the preceding methods do not
require making a plot of the data to obtain k values. With the graphical method
the data are plotted and then examined for deviations from linearity. The decision
whether a straight line gives a satisfactory fit is usually made intuitively by
using good judgment when looking at the data. When in doubt we should take
more data.

The graphical procedure is probably the safest, soundest, and most reliable
method for evaluating the fit of rate equations to the data, and should be used
whenever possible. For this reason we stress this method here.
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Figure 3.26 Calculated k values from successive
experimental points are likely to fluctuate
widely.




