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Figure 3.5 Overall order of reaction from
a series of half-life experiments, each at a
different initial concentration of reactant.

concentration for orders less than one, and is independent of initial concentration
for reactions of first order.

Numerous variations of this procedure are possible. For instance, by having
all but one component, say Ain large excess, we can find the order with respect
to that one component. For this situation the general expression reduces to

dcC A

where
k=k(Ch-+-) and Cy=Cg
And here is another variation of the half-life method.

Fractional Life Method #;. The half-life method can be extended to any frac-
tional life method in which the concentration of reactant drops to any fractional
value F = C,/C,, in time ;. The derivation is a direct extension of the half-life
method giving

Lgmall e Jeldill (g 4
il Clor Caill (o) (N J sl
k(n—1) A0 adaliin) Sy AT & seny

tp = (33b)

Thus, a plot of log # versus log C,y, as shown in Fig. 3.5, will give the reac-

tion order.
Example E3.1 illustrates this approach.

Irreversible Reactions in Parallel. Consider the simplest case, A decomposing
by two competing paths, both elementary reactions:
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The rates of change of the three components are given by

dC
—rA = th kiCp + kyCp = (kg + ky)Cy 34)
dC
\ ( =52 g, (35)
¥ e
% rg = d_ts = k,Cy (36)

This is the first time we have encountered multiple reactions. For these in general,
if it is necessary to write N stoichiometric equations to describe what is happening,
then it is necessary to follow the decomposition of N reaction components to
describe the kinetics. Thus, in this system following Cy, or Cg, or Cg alone will
not give both k; and k,. At least two components must be followed. Then,
from the stoichiometry, noting that C, + Ci + (s is constant, we can find the
concentration of the third component.

The k values are found using all three differential rate equations. First of all,
Eq. 34, which is of simple first order, is integrated to give

Koy ¥ aal g dalae Ca
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When plotted as in Fig. 3.6, the slope is k; + k,. Then dividing Eq. 35 by Eq.
36 we obtain the following (Fig. 3.6).
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which when integrated gives simply o) Ay

Cr — Cyo k1 (38)

Cs— Cs \ Ky ey
This result is shown in Fig. 3.6. Thus, the slope of a Versus @
gives the ratio k,/k,. Knowing k/k, as well as k; + k, gives k; and k,. Typic

concentration-time curves of the three components in a batch reactor for the
case where Cypy = Cgy = 0 and k; > k, are shown in Fig. 3.7.
Reactions in parallel are considered in detail in Chapter 7.

Homogeneous Catalyzed Reactions. Suppose the reaction rate for a homoge-
neous catalyzed system is the sum of rates of both the uncatalyzed and cata-
lyzed reactions,
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Figure 3.6 Evaluation of the rate constants for two competing elementary
R
/

first-order reactions of the type A\
S

with corresponding reaction rates
dC,
( dt )1 = kCa

daC
- (Tf)z = k,CpCc

This means that the reaction would proceed even without a catalyst present and
that the rate of the catalyzed reaction is directly proportional to the catalyst
concentration. The overall rate of disappearance of reactant A is then

aC
— S8 =l Cy+ kChCe = (ky + kiCIC (39)

culd
On integration, noting that the catalyst concentration remains unchanged, we
have
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Figure 3.7 Typical concentration-time curves for competing reactions.
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Figure 3.8 Rate constants for a homogeneous catalyzed reaction
from a series of runs with different catalyst concentrations.

Making a series of runs with different catalyst concentrations allows us to find
k, and k,. This is done by plotting the observed k value against the catalyst
concentrations as shown in Fig. 3.8. The slope of such a plot is k, and the
intercept k;.

Autocatalytic Reactions. A reaction in which one of the products of reaction
acts as a catalyst is called an autocatalytic reaction. The simplest such reaction is

A+R—R+R (41a)
for which the rate equation is
dC
—ry = — _dt_A = kC,Cg (41b)

Because the total number of moles of A and R remain unchanged as A is
consumed, we may write that at any time

Cy = Cy + Cg = C,y + Cgy = constant
Thus, the rate equation becomes

daC
AT T -CFA =kCr(Cy— Cp)

Rearranging and breaking into partial fractions, we obtain

dC, 1 (dC A dC, )
_ = - — + =kdt
CA(CO - CA) Co \ Ca Co— Cy
which on integration gives
CAO(CO — CA) Cr/Cro
In =In———=—= Cikt = (C,y + Cg) kt 4?2
CA(CO - CAO) CalCxo ° ( A9 ro) “42)
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Figure 3.9 Conversion-time and rate-concentration curves for autocatalytic reaction
of Eq. 41. This shape is typical for this type of reaction.

In terms of the initial reactant ratio M = Cyy/C,, and fractional conversion of
A, this can be written as

M+X,

In M= X,)

= Cpo(M + 1)kt = (Cypo + Cro)kt (43)

For an autocatalytic reaction in a batch reactor some product R must be present
if the reaction is to proceed at all. Starting with a very small concentration of
R, we see qualitatively that the rate will rise as R is formed. At the other extreme,
when A is just about used up the rate must drop to zero. This result is given in
Fig. 3.9, which shows that the rate follows a parabola, with a maximum where
the concentrations of A and R are equal.

To test for an autocatalytic reaction, plot the time and concentration coordi-
nates of Eq. 42 or 43, as shown in Fig. 3.10 and see whether a straight line passing
through zero is obtained.

Autocatalytic reactions are considered in more detail in Chapter 6.

Irreversible Reactions in Series. We first consider consecutive unimolecular-
type first-order reactions such as
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Figure 3.10 Test for the autocatalytic reaction of Eq. 41.
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whose rate equations for the three components are
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concentrations of the components change

(44)
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(46)

ith time. By integration of Eq. 44

Let us start with a concentration C,, of A, \.I.%O R or S present, and see how the

we find the concentration of A to be

—h‘l T kl or CA CAOe klt
CAO

(47)

To find the changing concentration of R, substitute the concentration of A from
Eq. 47 into the differential equation governing the rate of change of R, Eq. 45; thus

dC
=+ lyCr = ki Cpge ™

which is a first-order linear differential equation of the form

dy _

By multiplying through with the integrating factor e/*# the solution is

yelP& = f Qe'Pdx dx + constant

(48)

Applying this general procedure to the integration of Eq. 48, we find that the
integrating factor is e®’. The constant of integration is found to be —k;C,y/
(k, — k,) from the initial conditions Cy, = 0 at t = 0, and the final expression

for the changing concentration of R is

Ce = Caghe [ + 2
R kz“kl kl—kz

(49)

Noting that there is no change in total number of moles, the stoichiometry relates

the concentrations of reacting components by
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which with Egs. 47 and 49 gives

k, ky
— e —kqt —kyt
€3 Cm(l h—kf p+@—kf J (50)

Thus, we have found how the concentrations of components A, R, and S vary
with time.
Now if k, is much larger than k;, Eq. 50 reduces to

Cs—= Culli=iet); k, > k,

In other words, the rate is determined by k; or the first step of the two-step
reaction.
If k, is much larger than k,, then

CS = CAO (1 . e_k2t), kl > kz

which is a first-order reaction governed by k,, the slower step in the two-step
reaction. Thus, in general, for any number of reactions in series it is the slowest
step that has the greatest influence on the overall reaction rate.

As may be expected, the values of k; and k, also govern the location and
maximum concentration of R. This may be found by differentiating Eq. 49 and
setting dCg/dt = 0. The time at which the maximum concentration of R occurs
is thus

2l L1 _In(klk)
e klogmean k2 - kl

(31)

The maximum concentration of R is found by combining Egs. 49 and 51 to give

C — k k2/(k2—k1)
Rk ( 1) (52)

Cro \k

Figure 3.11 shows the general characteristics of the concentration-time curves
for the three components; A decreases exponentially, R rises to a maximum and
then falls, and S rises continuously, the greatest rate of increase of S occurring
where R is a maximum. In particular, this figure shows that one can evaluate k;
and k, by noting the maximum concentration of intermediate and the time when
this maximum is reached. Chapter 8 covers series reactions in more detail.

For a longer chain of reactions, say

A—-R—>S—>T—->U
the treatment is similar, though more cumbersome than the two-step reaction

just considered. Figure 3.12 illustrates typical concentration-time curves for
this situation.
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Figure 3.11 Typical concentration-time curves
for consecutive first-order reactions.

First-Order Reversible Reactions. Though no reaction ever goes to completion,
we can consider many reactions to be essentially irreversible because of the large
value of the equilibrium constant. These are the situations we have examined
up to this point. Let us now consider reactions for which complete conversion
cannot be assumed. The simplest case is the opposed unimolecular-type reaction
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K. = K = equilibrium constant (33a)
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Figure 3.12 Concentration-time curves for a chain of successive first-
order reactions. Only for the last two compounds do the maximum and
the inflection points occur at the same time.




