Third Class Thermodynamics Dr. Khalid Omran

IDEAL GAS AND IDEAL-GAS STATE

The equation PV = RT is now understood to define an ideal gas and to represent
a model of behavior more or less approximating the behavior of real gases. It is
called the ideal gas law, but is in fact valid only for pressures approaching zero
and temperatures approaching infinity.

The internal energy of a real gas depends on both pressure and temperature.
Pressure dependence results from intermolecular forces. If such forces did not
exist, no energy would be required to alter intermolecular distances, and no
energy would be required to bring about pressure and volume changes in a gas
at constant temperature. Thus, in the absence of intermolecular forces, internal
energy would depend on temperature only.

Two equations are fundamental to this state, namely the “ideal-gas law” and an
expression showing that internal energy depends on temperature alone:

« The equation of state:

PV =RT (3.7)

« [Internal energy:

Uis = U(T) (3.8)

The superscript ig denotes properties for the ideal-gas state.
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Property Relations for the Ideal-Gas State

The definition of heat capacity at constant volume, Eq. (2.13), leads for the ideal-gas state o
the conclusion that Cy7 is a function of temperature only:

) |j|:I Lrll? ;|'
Cit = (d’;_ ) = ) _ gireny (3.9)

The defiming equation for enthalpy, Eq. (2.100. apphed to the ideal-gas state, leads to the
conclusion that H' is also a function only of temperature:

HE= U4 PVE= "8 (TV+ RT=HE (T (3.10)

The heat capacity al constant pressure C_.';'?. defined by Eqg. (2.19), like Ciﬁ, i a function of
temperatura only:

i
C¥ =

ig ip
(d‘” ) 2D _ ey (3.11)

ar J, dr

A useful relation between C3F and €, for the ideal-gas state comes from differentiation of Eq. (3.10:

i = dH®  dL/E
F=4r — odr

+R=CF+R (3.12)

This equation does not mean that E?;'*' and r.’.?.'f arz themselves constant for the ideal-gas stata,
but only that they vary with temperature in such a way that their difference is equal to R. For
any change in the idzalgas stake. Eqgs. (3.9) and (3.11) lead to:

,fL-'fx:C.iﬁa‘T {3.13a) .ib"“’-:fﬂ.[ﬁa‘?' (3.13b})

dH® = CfdT (3.14a) | AH® = f CFdT  (3.14b)

Because both U9 and C\' for the ideal-gas state are functions of temperature
only, AU for the ideal-gas state is always given by Eq. (3.13b), regardless of
the kind of process causing the change.
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Process Calculations for the ideal-Gas State

Process calculations provide work and heat quantities. The work of a mechanically reversible
closed-system process is given by Eq. (1.3), here written:

dW = —PdVs (1.3)

For the ideal-gas state in any closed-system process, the first law as given by Eq. (2.6) written
for a unit mass or a mole, may be combined with Eq. (3.13a) to give:

40 + dW = ¥ dT

Substitution for dW by Eq. (1.3) and solution for dQ) yields an equation valid for the ideal-gas
state in any mechanically reversible closed-system process:

dQ = C,fdT + PdV'e (3.15)

This equation contains the variables P, V', and T, only two of which are independent.
Working equations for ) and dW depend on which pair of these vanables 1s selected as
inde pendent; 1.e., upon which vanable is eliminated by Eq. (3.7). We consider two cases,
eliminating first P, and second, V5. With P = RT/V', Eqs. (3.15) and (1.3) become:

i | l:'éga.ﬂ" RTWEH 3.16) | dW RTJWH 317
Q—-v+ﬁi-:‘ ——W{-}

. . R dP . ; e
For VI =RT/P, dV'& = —(dT — TF:I' Substituting for V¥ and for C}f = C¢' — R transforms
Egs. (3.15) and (1.3) into:

A dP dpP
dQ=Cp'dT - RT < (3.18) | dW=—Rdl +RT—  (3.19)

These equations apply to the Ideal-gas state for varlous process calcula-
tlons. The assumptions Implicit in thelr derivation are that the system Is
closed and the process Is mechanically reversible,
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Isothermal Process
By Egs. (3.13b) and (3.14b),

By Eqgs. (3.16) and (3.18),

By Eqgs. (3.17) and (3.19),

ALE= AH®E=0 (constT)
Vi P
0=RTIn—=RTIn—
U Py
T
j P
W=RTIn——=RTIn—
Ve Py

Because ) =—W, a result that also follows from Eq. (2.3), we can wril2 in summary:

PQ=—W=RTIn—

rig
2

P .
RTIn— iconst T}

Vi - !

Isobaric Process

By Eqgs. (3.13b) and (3.19) with 4P = 0,

Alsie = /r;iﬁ'd;r' and W= —R(T;-T;)

By Eqgs. (3.14b) and (3.18),

Q= AH =/E,';‘Ea’]" {const P)

Isochoric (Constant-V) Process
With d¥ie= 0, W =0, and by Egs. (3.13b) and (3.186),

0= AL =/E.:§'d?' (const Vi)

Adiabatic Process; Constant Heat Capacities

An adiabatic process 15 one for which there is no heat transfer between the system and its
surroundings; i.e., d = 0. Each of Eqgs. (3.16) and (3.18) may therefore be set equal to zero.
Inte gration with Cf and €, constant then yields simple relations among the variables T, P,
and Viz, valid for mechanically reversible adiabatic compression or expansion in the ideal-gas
state with constant heat capacities. For example, Eq. (3.16) becomes:

dar R dVie

T~ c# v

(3.20)

(3.21)

(3.22)




Third Class Thermodynamics Dr. Khalid Omran

Integration with ;7 constant pives:

Similarly, Eq. (3.18) leads to:

()™
o (FL

Thesz equations may also be expressed as:

Tivier—l=const (3.23a) | TPY-rVr=const (3.23b) [ P(V#y =const (3.23c)

where Eg. (3.23c) results by combining Eqs. (3.23a and (3.23b) and where by definition,*

~ ip
_ E’P

= 7
= C.if (3.24)

¥

Equations (2.23) apply for the ideal-gas state with constant heat capaci-
ties and are restricted to mechanically reversible adiabatic expansion or
compression.

The first law for an adiabatic process in a closed system combined with Eq. (3.13a)
yields:

dW=dli= CF I
For constant CiF,
W=AUk= I!'.,'.if'.'i'.T (3.25)

Alernative forms of Eq. (3.25) result if C{F 15 eliminated in favor of the heat-capacity ratio p:

Ci® CFLR R . R
}-;_‘:z;;l_—zl-l-? or I!'.:.:«'E=—

and

T . R
W=CfAT=——
F—1
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Because RT; = P\V¥ and RT; = P,V this expression may be writtzn:

_ A _ rip
wo B2 —RT1 _ PaV3 = PiVy (3.26)
r—1 r—1

Equations (3.25) and (3.26) are general for adiabatic compression and expansion
processes in 4 closed system, whether reversible ornot, because P, V& and T are state functions,
independent of path. However, T, and P“ are usually unknown. Elimination of Vie from
Eq. (3.26) by Eg. (3.23c), valid only fur ma:hamn:alw reversible processes, leads to the

EIP[ESE-IDH
w_Fl.FE:E (ﬁ){f'”ﬁr—] B R'T] (ﬁ)'ﬁ"']]ﬁ'_ | I:Jﬂ.:l
N r—1 P N r—1 Py -

The same result is obtained when the relation between P and V2 given by Eqg. (3.23c) is used
for the integration, W = — [ Pd Ve,

Equation (3.27) is valid only for the ideal-gas state, for constant heat
capacities, and for adiabatic, mechanically reversible, closed-system
processes.

When applied to real gases, Egs. (3.23) through (3.27) often yield satisfactory approxi-
mations, provided the deviations from ideality are relatively small. For monatomic gases, y =
1.67; approximate values of y are 1.4 for diatomic gases and 1.3 for simple polyatomic gases
such as C04, 80, NH. and CH,.

Irreversible Processes

All equations developed in this section have been derived for mechanically reversible,
closed-system processes for the ideal-gas stale. However, the equations for property changes—
dLFE MR ALFE and AH*—are valid for the ideal-gas stale regardless aof the process. They
apply equally to reversible and irreversible processes in both closed and open systems, because
changes in properties depend only on initial and final states of the system. On the other hand,
an equation for Q or W, unless it is equal to a property change, is subject to the restrictions of
its derivation.

The work of an irreversible process is usually calculated by a two-step procedure.
First, W is determined for a mechanically reversible process that accomplishes the same
change of state as the actual irreversible process. Second, this result is multiplied or divided
by an efficiency to give the actual work. If the process produces work, the absolute value
fior the reversible process is larger than the value for the actual ireversible process and must
be multiplied by an efficiency. If the process requires work, the value for the reversible
process is smaller than the value for the actual irreversible process and must be divided by
an efficiency.

Applications of the concepts and equations of this section are illustrated in the examples
that follow. In particular, the work of irreversible processes is treated in Ex. 3.5.
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Example 3.3

Alr Is compressed from an Initlal state of 1 bar and 298.15 K to a final state of 3 bar
and 298.15 K by three different mechanlically reversible processes In a closed system:

[g) Heating at constant volume followed by cooling at constant pressure.
() Isothermal compresskon.
(c) Adiabatic compression followead by cooling at constant volumie.

These processes are shown In the ﬂgure- WE' assume alr to be In Its Ideal-gas state,
and assume constant heat capacitles, Cv = 2785 and CE": 29.100 Jmol-1.K-1.
Calculate the work reguired, heat transferred, and the changes In Internal energy and
enthalpy of the alr for each process.

Solution 3.3

Choose the system as | mol of air. The initial and final states of the air are identi-
cal with those of Ex. 2.7. The molar volumes given there are

VE= 002479 m®  VIF= 0008263 m?
Because T is the same at the beginning and end of the process, in all cases,
AUB=AH®=0

{a) The process here is exactly that of Ex. 2.7(k), for which:
(=—4958]1 and W=4958]

{b) Equation (3.20) for isothermal compression applies. The appropriaie value of
R here (from Table A.2 of App. A)is R =8.314Jmol- LKL

P |
(0=—-W=RTIn -F—'= (8.314)(298.15) In 5 =—2723)

{c) The initial step of adiabatic compression takes the air to its final volume of
0008263 m”. By Eq. (3.23a), the emperature at this point is:
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g T ;
=T, (—::—:) = (20%.15) (%)D q=452.5u K
For this siep, 0 = 0, and by Eq. (3.25), the work of compression is:
W= Cf AT = CF(T" — Ty) = (20.785) (462.60 — 298.15) = 34201
For the constant-volume step, no work is done; the heat transfer is:
0= ALE= CFT,— T ) = 20785 (208.15 — 462.60) = —34201]
Thus for process (c),

W=3420] and Q=-3420]

Although the property changes AL and AH® are zero for each process, ¢ and
W ame path-dependent, and here @ = —W. The figure shows each process on a PVE
diagram. Because the work for each of these mechanically reversible processes is
given by W =— [Pd Vi, the work for each process is proportional o the total area
below the paths on the PVe diagram from 1 to 2. The mlative sizes of these areas
comespond to the numerical values of W.

Example 3.4

A gas In lis Ideal-gas state undergoes the following seguence of mechanically
reversible processes In a closed system:

{g) From an Initlal state of 70°C and 1 bar, It Is compressed adlabatically to 150°C.
{b) It s then cooled from 150 to 70°C at constant pressure.
(c) Finally, it expands Iscthermally to s original state.
Calculate W, Q. AUY, and AH' for each of the three processes and for the entire cycle.
Take G =12.471 and C¥ = 20.785 Jmol- 1K,

Solution 3.4
Take as a basis 1 mol of gas.

{a) For adiabatic compmession, @ = 0, and
AUe=W=CFAT= (12471150 — 70) =998 ]
AHE=CFAT=(20785)150 — T0) = 1663 1
Pressure P; is found from Eq. (3.23b):

rl) Al ]( 150 + 273.15

Pa=Py| —
: ‘( 70 + 273.15

15
= 1.6%0 bar
- )
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3 2
T0AC 1&0°C

(b} For this constant-pressure process,
0 =AHE=CFAT=(20785)70 - 150)= — 1663 ]
AU= CEAT=(12.471)(70 — 150)= —998 ]
W= AL — 0 =—998 — (- 1663) = 665]

() For this isothermal process, AL and A H' are zero; Eq. (3.20) yields:

P P2 1.689
D=-W= R‘Tlnp—j =RT 1nF—‘= (B314)343.15) I“_l_ = 14051
1 1

For the entire cycle,

Q0 =0-1663 +1495=-168]
W="908 + 665— 1495=1681]
AUE =008 098 + D=0
AH® = 1663 — 1663 +0=0
The property changes AL and AH% both are zero for the entire cycle because

the initial and final staies are identical. Note also that 0 = —W for the cvcle. This
follows from the first law with A L2 = 0.

Example 3.5

If the processes of Ex. 2.4 are carrled out rrreversibly but so as to accomplish exactly the
same changes of stote—the same changes In P. T, U9, and H9—then different values of
G and Wresult. Calculate @ and W If each step 15 camed out with a work efficiency of 80%.

Solution 3.5

If the same changes of stake as in Ex. 3.4 are carried out by irreversible processes,
the property changes for the sieps are identical with those of Ex. 3.4. However, the
valves of  and W change.
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{a) For mechanically reversible, adiabatic compression, the work is W, =998 1.
If the process is 80% efficient compared with this, the actual work is larger, and
W = 098/0.80 = 1248 J. This step cannot here be adiabatic. By the first law,

0= AL W=008 — 1243 = -250]

(k) The work required for the mechanically reversible cooling process is 665 1. For
the irreversible process, W = 665/0_80 = 831 J. From Ex. 3.4(b), AU = —998 J, and
Q=AU W=_008 — B3] =—1829]

{c) As work is done by the system in this step, the imeversible work in absolute
value is less than the reversible work of — 1495 1, and the actual work done is:

W= (080N-1495)==11961]
Q=AU _W=041196=1196]
For the entire cycle, A L% and AH are zero, with

@ =-250- 1829 + 1196 =—8E3]
W=1248 + 831 - 1196=8E83]

A summary of these resulis and those for Ex. 3.4 is given in the following table;
values are in joulkes.

Mechanically reversible, Ex. 3.4 Irreversible, Ex. 3.5
ALFE AH ) W ALrE AH® @ L
() patl I 663 0 998 QU8 1663 —250 1248
() 098 —1663 —1663 665 —008 —1663 — 1829 83l
() 1] 1] 1495 —14495 0 0 1196 —1196
Cycle 0 0 — 168 168 0 0 — 883 HE3

The cycle is one which requires work and produces an equal amount of heat.
The striking feature of the comparison shown in the table is that the total work
required when the cycle consists of three ireversible steps is more than five times
the total work required when the steps are mechanically reversible, even though
each imeversible step is assumed to be B0% efficient.



