

Analytical chemistry
Chemical engineering department
First class / first term
Al-Mustaqbal-college
Lecture five
acidity or the basicity of a substance
By
Asst. lect. Ban Ali Hassan

Lecture Three

$\Rightarrow \mathrm{pH}$ and pOH

pH scale is a commonly used scale to measure the acidity or the basicity of a substance. The possible values on the pH scale range from 0 to 14 . Acidic substances have pH values ranging from 1 to 7 (1 being the most acidic point on the pH scale) and alkaline or basic substances have pH values ranging from 7 to 14 . A perfectly neutral substance would have a pH of exactly 7 .
pH which is an abbreviation of 'potential for hydrogen' or 'power of hydrogen' of a substance can be expressed as the negative logarithm (with base 10) of the hydrogen ion concentration in that substance. Similarly, the pOH of a substance is the negative logarithm of the hydroxide ion concentration in the substance. These quantities can be expressed via the following formulae:

- $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- $\mathrm{pOH}=-\log [\mathrm{OH}]$

The pH Scale

Lecture Three

\Rightarrow Relation between $\mathrm{p}\left[\mathrm{H}^{+}\right]$and $\mathrm{p}\left[\mathrm{OH}^{-}\right]$:

pH vs. pOH scale:

	pH		pOH
1 M sodium hydroxide (NaOH)	14		0
	13	\uparrow	1
household ammonia	12	$\frac{\square}{n}$	2
	11	\%	3
toothpaste	10	¢	4
baking soda solution	9		5
	8		6
pure water	7		7
urine	6		8
black coffee	5		9
	4	는	10
cola or vinegar	3	¢	11
	2	$\frac{0}{2}$	12
gastric juices	1	\downarrow	13
1 M hydrochloric acid (HCl)	0		14

Acid solutions usually have protons and basic solutions have hydroxide ions. Concentrations of the ions are low (negative power of ten). pH scale is a convenient way of expressing these low concentrations in simple numbers between 1 and 14.
pH is the negative logarithm to the base ten of hydrogen ion concentration in moles per liter.
$\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]$
$\mathrm{p}(\mathrm{OH})$ is the negative logarithm to the base ten of hydroxide ion concentration in moles per liter.
$\mathbf{p O H}=-\log \left[\mathrm{OH}^{-}\right]$
In aqueous solutions, $\mathbf{p H}+\mathbf{p}(\mathbf{O H})=\mathbf{1 4}$.
pH scale is based on neutral water, where $[\mathbf{H}+]=[\mathbf{O H}-]=\mathbf{1 0 - 7}$

Lecture Three

For a neutral solution $\mathbf{p H}=-\log [\mathrm{H}+]=-\log [10-7]=+7$
Finding $\mathbf{p}[\mathrm{OH}]=-\log \left[\mathrm{OH}^{-}\right], \quad \mathbf{p H}=\mathbf{1 4} \mathbf{~} \mathbf{p O H}$
Finding $[\mathrm{OH}]$ in bases :
$\mathbf{p H}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
1x $10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Example $1 \backslash$ A solution of acetic acid $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathbf{H}\right)$ has an \mathbf{H}^{+} concentration of $5 \times 10^{-5} \mathrm{M}$. what is the pH of the solution?
Sol. :
$\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]$
$\mathrm{pH}=-\log \left[5 \times 10^{-5}\right]$
$=4.3$, it is relatively weak acid .

Example $2 \backslash$ find the $\mathbf{p H}$ of a $\mathbf{0 . 0 1 2} \mathbf{M}$ sodium hydroxide (NaOH) solution.
Sol. :
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

$$
=-\log [0.012]=1.92
$$

$\mathrm{pH}+\mathrm{p}(\mathrm{OH})=14$
$\mathrm{pH}=14-1.92=12.08$, the solution has $\mathbf{p H}$ of $\mathbf{1 2 . 0 8}$ and is a strong base.

Lecture Three

pH and pOH are related to one another; THEY ARE NOT INDEPENDENT OF EACH OTHER. As pH increases, pOH decreases. As pH decreases, pOH increases. By knowing what ion you are measuring on which scale, this will tell you whether or not the solution is acidic or basic.

Ion Concentration	Solution Type	$\mathbf{p H}$	$\mathbf{p O H}$
$[\mathrm{H}+]>[\mathrm{OH}-]$	Acidic	$\mathrm{pH}<7$	$\mathrm{pOH}>7$
$[\mathrm{H}+]<[\mathrm{OH}-]$	Basic	$\mathrm{pH}>7$	$\mathrm{pOH}<7$
$[\mathrm{H}+]=[\mathrm{OH}-]$	Neutral	$\mathrm{pH}=7$	$\mathrm{pOH}=7$

Because these scales are related, an equation can be used to explain their correlation.

$$
\begin{aligned}
& \frac{p H+p O H=14}{p H=14-p O H} \\
& p O H=14-p H
\end{aligned}
$$

The bottom equations are manipulations of the top equation
The KEYS to calculations are knowing:

1. Knowing what type of solution you are working with
2. What equation to use first

Example Calculations:

1. Calculate the pH and pOH of a $0.33 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

- Are you working with an acid or a base?
- Are you given the concentration, or Molarity of that solution?
- Next, plug the concentration or Molarity into the correct equation.

Because this is an acidic solution, we have to calculate pH first.
$p H=-\log [0.33]=$ \qquad

Now we can calculate the pOH , because we have calculated the pH . $p O H=14-p H=$ \qquad $=$ \qquad
2. Calculate the pH and pOH of a 0.25 M NaOH solution.

- Are you working with an acid or a base? \qquad
- Are you given the concentration, or Molarity of that solution?
- Next, plug the concentration or Molarity into the correct equation.

Because this is a basic solution, we have to calculate pOH first.

$$
p O H=-\log [0.25]=
$$

\qquad
Now we can calculate the pH , because we have calculated the pOH .
$p H=14-p O H=$ \qquad = \qquad

Lecture Three

Ex/ What is the pH of a 0.0005 M solution of NaOH at $25^{\circ} \mathrm{C}$?
Solution / $\quad \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

$$
\begin{aligned}
{\left[\mathrm{OH}^{=}\right] } & =0.0005 \mathrm{M}=5 \times 10^{-4} \mathrm{M} \\
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log 5 \times 10^{-4} \\
& =-\log 5+4 \log 10 \\
& =-0.699+4 \\
& =3.301 \\
\mathrm{pH}= & 14-3.401=10.7
\end{aligned}
$$

$\mathrm{Ex} /$ What is the pH of a $0.1 \mathrm{M} \mathrm{NH}_{3}$ solution ? $\mathrm{K}_{\mathrm{b}} 1.8 \times 10^{-5}$
Solution /
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
0.1

0
0
0.1-X X X

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH}_{3}\right] \\
& 1.8 \times 10^{-5}=(\mathrm{X})(\mathrm{X}) / 0.1-\mathrm{X} \\
& 1.8 \times 10^{-5}=\mathrm{X}^{2} / 0.1 \\
& \mathrm{X}^{2}=1.8 \times 10^{-6} \\
& \mathrm{X}=1.34 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Lecture Three

$$
\begin{aligned}
\mathrm{pOH}= & -\log \left[\mathrm{OH}^{-}\right]=-\log 1.34 \times 10^{-3}=2.87 \\
& \mathrm{pOH}+\mathrm{pH}=14 \\
& \mathrm{pH} 14-2.87=11.12
\end{aligned}
$$

