Bond and development length:

Bond:

$M_{@ x}=T * j d$
$M_{@ x+d x}=M+d M$

$$
=(T+d T) * j d
$$

$d M=d T * j d \rightarrow d T=\frac{d M}{j d} \ldots .1$
This change in bar force is resisted at the contact surface between steel and concrete by equal and opposite force produced by bond.

If $\mathrm{U}=$ bond force per unit length of bar.

Bond force consist of :

1. Adhesion
2. Friction

3. Mechanical interlock of the deformations with
surrounding concrete
$\sum f x=0 \rightarrow T+U d X=T+d T \rightarrow U=\frac{d T}{d X} \ldots \ldots \ldots \ldots . .2$

Substitute eq1 into eq2

$$
\begin{aligned}
U= & \frac{1}{j d} \frac{d M}{d X}=\frac{V}{j d} \quad \text { apply to tension bars only } \\
& V: \text { shear force }
\end{aligned}
$$

Development length: that length of embedment necessary to develop the full tensile strength of the bar.

Factors influencing development length:
1.Concrete tensile strength, fc_{t}
2.Cover distance
3.Spacing of reinforcing
 bars
4.Transverse steel bars

ACI Code equations for development of tension bars:

- $\sqrt{f c^{\prime}} \leq \frac{25}{3} M P a$
- $\mathrm{Ld} \geq 300 \mathrm{~mm}$
a. Basic equation:
$L d=\left(\frac{3}{40} \frac{f y}{\sqrt{f c^{\prime}}} \frac{\alpha \beta \gamma \lambda}{\frac{c+t r r}{}}\right) d b$, ACI eq.12-1,sec 12.2.3,empirical eq.
$\frac{C+K_{t r}}{d b} \leq 2.5$
C:smaller of min. cover(measuring from center of the bar to the nearest concrete surface) or $\frac{1}{2}$ the center to center spacing of the bars.
$K_{t r}:$ transverse reinforcement index $=\frac{A_{t r} f_{y t}}{10 s n}$ it shall be permitted to use $K_{t r}=0$ as a design simplification even transverse reinforcement(stirrups) is present.
$A_{t r}$: total cross sectional area of all transverse reinforcement that is within the spacing $(\mathrm{S}), \mathrm{mm}^{2}$.

S: max. center to center spacing of transverse reinforcement with Ld, mm.
n : number of bars being spliced or developed.
α : reinforcement location factor:

- Horizontal reinforcement so placed that more than 300 mm of fresh concrete is cast in the member below the development length or splice.....1.3
- Other reinforcement1.0
β : coating factor:
- Epoxy coated bars with cover less than 3db or clear spacing less than 6db....................................... 1.5
- All other epoxy coated bars1.2
-Uncoated bars 1.0
Note: $\alpha * \beta \leq 1.7$
γ : reinforcement size factor:
- Bar diameter $\leq 19 \mathrm{~mm}$.............. 0.8
- Bar diameter $\geq 22 \mathrm{~mm}1 .0$
λ : Light weight aggregate concrete factor:
- When Light weight aggregate concrete is used1.3

However, when fc_{t} is specified, λ permitted to be taken as :
$\frac{\sqrt{f c^{\prime}}}{1.8 f c_{t}}$ but not less than 1.0

- When normal weight concrete is used,1.0

b. Simplified equations:

Condition	$\begin{aligned} & \text { Bar diameter } \leq \\ & 19 \mathrm{~mm} \end{aligned}$	Bar diameter $\geq 22 \mathrm{~mm}$
- Clear spacing of bars being developed or spliced not less than bar diameter - Clear cover $\geq \mathrm{db}$ - Stirrups or ties through $L d \geq A v_{\text {min }}$ OR - Clear spacing of bars being developed or spliced $\geq 2 \mathrm{db}$ - Clear cover $\geq \mathrm{db}$	$\left(\frac{12}{25} \frac{f y \alpha \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b$	$\left(\frac{3}{5} \frac{f y \alpha \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b$
Other cases	$\left(\frac{18}{25} \frac{f y \alpha \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b$	$\left(\frac{9}{10} \frac{f y \alpha \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b$

ACI Code equations for development of compression

 bars:ACI 12.3- $\sqrt{f c^{\prime}} \leq \frac{25}{3} M P a$
- $\mathrm{Ld} \geq 200 \mathrm{~mm}$

$$
\begin{aligned}
& L d_{c}=\max \left[\left(\frac{0.24 f y}{\sqrt{f c^{\prime}}}\right) d b,(0.043 f y) d b\right] \\
& \quad \text { wher } 0.043 \mathrm{in} \frac{\mathrm{~mm}^{2}}{\mathrm{~N}}
\end{aligned}
$$

* $L d_{c}$ shall be permitted to be multiplied by the applicable factors for:
\bullet Excess reinforcement $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \frac{A s_{\text {required }}}{A s_{\text {provided }}}$
- Reinforcement enclosed within spiral reinforcement $\varnothing \geq 6 \mathrm{~mm}$ and pitch $\leq 100 \mathrm{~mm}$ OR within ties conformance with sec.
7.10.5(column requirements) and spaced at not more than $100 \mathrm{~mm}0 .75$

EX1: $f y=400 \mathrm{MPa}, \mathrm{fc}^{\prime}=25 \mathrm{MPa}, \mathrm{As}_{\text {required }}=1250 \mathrm{~mm}^{2}$, check development length, Ld.

Solution:

- Clear spacing $\mathrm{Sc}=[300-2 * 50-2 * 10-3 * 25] /(3-1)=52.5 \mathrm{~mm}>$ $2 \mathrm{db}=2 * 25=50 \mathrm{~mm}$
- Clear cover $=50+10=60 \mathrm{~mm}>\mathrm{db}=25 \mathrm{~mm}$

Second conditions are satisfied
$\gamma=1.0($ distance $=50+10=60 \mathrm{~mm}<300 \mathrm{~mm})$
$\beta=1.0$ uncoated reinforcement
$\lambda=1.0$ normal concrete
$\emptyset=25 \mathrm{~mm}>22 \mathrm{~mm} \rightarrow L d=\left(\frac{3}{5} \frac{f y \alpha \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b$
$L d=\left(\frac{3}{5} * \frac{400 * 1 * 1 * 1}{\sqrt{25}}\right) * 25=1200 \mathrm{~mm}$
$L d=1200 * \frac{A s_{\text {required }}}{A s_{\text {provided }}}=1200 * \frac{1250}{3 * 25^{2} * \pi / 4}=1018 \mathrm{~mm}$
$>300 \mathrm{~mm}$ O. K
Available distance $=(5000 / 2)-(50 / 1000)=2450 \mathrm{~mm}>\mathrm{Ld}=1018 \mathrm{~mm}$ O.K

EX2: $f y=400 \mathrm{MPa}, \mathrm{fc}^{\prime}=25 \mathrm{MPa}$, check development length, Ld.

Solution:

- Clear spacing $\mathrm{Sc}=[250-2 * 50-2 * 12-3 * 25] /(3-1)=25.5 \mathrm{~mm}$ > $\mathrm{db}=25 \mathrm{~mm}$
- Clear cover $=50+12=62 \mathrm{~mm}>\mathrm{db}=25 \mathrm{~mm}$
- $A v_{\text {min }}=\frac{b w S}{3 f y}=\frac{250 * 100}{3 * 400}=21 \mathrm{~mm}^{2}$

OR $A v_{\text {min }}=\frac{\sqrt{f c^{\prime}} b w S}{16 f y}=\frac{\sqrt{25} * 250 * 100}{16 * 400}=20 \mathrm{~mm}^{2}$
$A v_{\text {provided }}=2 * 113=226 \mathrm{~mm}^{2}>A v_{\text {min }}$
First conditions are satisfied
$\alpha=1.3$ since (distance $=600-50-12-25=513 \mathrm{~mm}>300 \mathrm{~mm}$)
$\beta=1.0$ uncoated reinforcement
$\lambda=1.0$ normal concrete
$\emptyset=25 \mathrm{~mm}>22 \mathrm{~mm} \rightarrow L d=\left(\frac{3}{5} \frac{f y \alpha \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b$
$L d=\left(\frac{3}{5} * \frac{400 * 1.3 * 1 * 1}{\sqrt{25}}\right) * 25=1560 \mathrm{~mm}>300 \mathrm{~mm} \mathrm{O}$ O.K
Available distance:
L1 provided=2000-50=1950mm>Ld=1560mm O.K
L2 provided $=1000-50=950 \mathrm{~mm}<L d=1560 \mathrm{~mm}$ N.G
Alternate solutions:

1. Increase numbers of bars with smaller diameter
2. Use mechanical anchorage.

Mechanical anchorage:

It is effective only for bars in tension.
a. Standard hook of main reinforcement(flexural reinforcement) ACI 7.1,7.2:

Development of standard hook of main

reinforcement(flexural reinforcement) ACI 12.5:

$l d_{h}=\left(\frac{0.24 f y \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b *$ factor $\geq \max (8 d b, 150 \mathrm{~mm})$
ACI 12.5.2
$\beta=1.2$ for epoxy coated reinforcement
$\lambda=1.3$ for light weight concrete
for other cases $\beta=\lambda=1.0$

Factors :ACI 12.5.3

(a) For No. 36 bar and smaller hooks with side cover (normal to plane of hook) not less than 65 mm , and for 90 degree hook with cover on bar extension beyond hook not less than 50 mm

(b) For 90 degree hooks of No. 36 and smaller bars that are either enclosed within ties or stirrups perpendicular to the bar being developed, spaced not greater than $\mathbf{3} \boldsymbol{d}_{b}$ along $\ell_{d h}$; or enclosed within ties or stirrups parallel to the bar being developed, spaced not greater than $\mathbf{3} d_{b}$ along the length of the tail extension of the hook plus bend

(c) For 180 degree hooks of No. 36 and smaller bars that are enclosed within ties or stirrups perpendicular to the bar being developed, spaced not greater than $3 d_{b}$ along $\ell_{d h}$
(d) Where anchorage or development for f_{y} is not specifically required, reinforcement in excess of that required by analysis \qquad ($\boldsymbol{A}_{\boldsymbol{s}}$ required $) /\left(\boldsymbol{A}_{\boldsymbol{s}}\right.$ provided)

In 12.5.3(b) and 12.5.3(c), \boldsymbol{d}_{b} is the diameter of the hooked bar, and the first tie or stirrup shall enclose the bent portion of the hook, within $2 d_{b}$ of the outside of
 the bend.
12.5.4 - For bars being developed by a standard hook at discontinuous ends of members with both side cover and top (or bottom) cover over hook less than 65 mm , the hooked bar shall be enclosed within ties or stirrups perpendicular to the bar being developed, spaced not greater than $3 d_{b}$ along $\ell_{d h}$. The first tie or stirrup shall enclose the bent portion of the hook, within $2 d_{b}$ of the outside of the bend, where d_{b} is the diameter of the hooked bar. For this case. the factors of 12.5 .3 (b) and (c) shall not apply.

For previous example if use 90° hook:
$\beta=1.0$ uncoated reinforcement
$\lambda=1.0$ normal concrete
factor=1.0

$$
\begin{aligned}
l d_{h} & =\left(\frac{0.24 f y \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b * \text { factor } \geq \max (8 d b, 150 \mathrm{~mm}) \\
l d_{h} & =\left(\frac{0.24 * 400 * 1 * 1}{\sqrt{25}}\right) 25 * 1 * 1=480 \mathrm{~mm} \\
& \geq \max (8 \mathrm{db}=8 * 25=200,150 \mathrm{~mm}) \rightarrow
\end{aligned}
$$

$\therefore l d_{h}=480 \mathrm{~mm}$

L2 provided $=950 \mathrm{~mm}>\mathrm{Ld}_{\mathrm{h}}=480 \mathrm{~mm}$ O.K $\mathrm{r}=4 \mathrm{db}=4 * 25=100 \mathrm{~mm}$

b.Standard hook of web reinforcement(Stirrups):ACI

 7.1.3

$$
\begin{aligned}
& r=2 d_{b} \text { for } \varnothing \leq 16 \\
& r=3 d_{b} \text { for } 16<\varnothing \leq 25
\end{aligned}
$$

Development of web reinforcement(Stirrups):ACI 12.13

12.13.2.1 - For No. 16 bar and MD 200 wire, and smaller, and for No. 19, No. 22, and No. 25 bars with $f_{y t}$ of 280 MPa or less, a standard hook around Iongitudinal reinforcement.
12.13.2.2 - For No. 19, No. 22, and No. 25 stirrups with $\boldsymbol{f}_{\boldsymbol{y t}}$ greater than 280 MPa , a standard stirrup hook around a longitudinal bar plus an embedment between midheight of the member and the outside end of the hook equal to or greater than $0.17 d_{b} f_{y t} / \sqrt{f_{c}{ }^{\prime}}$.
12.13.3 - Between anchored ends, each bend in the continuous portion of a simple U -stirrup or multiple U stirrup shall enclose a longitudinal bar.

standard hook $900^{\circ} \mathrm{orl} 35^{\circ}$

619,22,25 for $\mathrm{Fy} \leq \mathbf{2 8 0 M P a}$
stand ard hook $90^{\circ} 0 \mathrm{rl35}{ }^{\circ}$
wide beam with multipl leg U stirrups

Bar Splices:

a. Splice of deformed bars in tension ACI 12.15.
*min. lap length $=300 \mathrm{~mm}$
*Ld, calculated as before, without Excess reinforcement factor $\left(\frac{A s_{\text {required }}}{A_{\text {provided }}}\right)$

$\frac{A s_{\text {provided }}}{}$	Max. percent of As spliced within As required	
	50%	100%
≥ 2.0	Class A $\left(1.0^{*} \mathrm{Ld}\right)$	Class B $\left(1.3^{*} \mathrm{Ld}\right)$
<2.0	Class B $(1.3 * \mathrm{Ld})$	Class B $\left(1.3^{*} \mathrm{Ld}\right)$

b.Splice of deformed bars in compression ACI12.16.

fy,(MPa)	fc',(MPa)	Lap length	
≤ 420	≥ 21	0.071 fy d $_{\mathrm{b}}$	
	<21	$1.33 \mathrm{fy} \mathrm{d}_{\mathrm{b}}$	$\geq 300 \mathrm{~mm}$
$\ggg 420$	≥ 21	$(0.13 \mathrm{fy}-24) \mathrm{d}_{\mathrm{b}}$	
	<21	$1.33(0.13 \mathrm{fy}-24) \mathrm{d}_{\mathrm{b}}$	

Bar cutoff and bend points in beams:

The tensile force to be resist by the reinforcement at any cross section is:
$T=A s F s=\frac{M}{Z}$
M:the value of bending moment at that section
z : the internal lever arm of resisting moment.
The tensile force can be taken with good accuracy directly proportional to the bending moment. Since it is desirable to design that the steel everywhere in the beam is as nearly fully stressed as possible, it follows that the required steel area is very nearly proportional to the bending moment.

a. Theoretical points of cut off or bend

(a):Moment diagram for a uniformly loaded simply supported beam

(b):Moment diagram for a uniformly loaded continuous beam

Location of points where bars can be bent up or cut off for simply supported beam uniformly loaded

b. Practical considerations and ACI code requirements: ACI 12.10, 12.11, 12.12

For simply supported span

For continuous beams : using ACI code moment coefficients

ACI code $\mathbf{1 2 . 1 0}$ requires special precautions

Flexural reinforcements shall not be terminated in a tension zone unless one of the following is satisfied:

12.10.5.1 $-V_{u}$ at the cutoff point does not exceed $(2 / 3) \phi V_{n}$.
12.10.5.2 - Stirrup area in excess of that required for shear and torsion is provided along each terminated bar or wire over a distance (3/4)d from the termination point. Excess stirrup area shall be not less than $0.41 b_{w} s / f_{y t}$. Spacing s shall not exceed $d /\left(\mathbf{8} \beta_{b}\right)$.
12.10.5.3 - For No. 36 bars and smaller, continuing reinforcement provides double the area required for flexure at the cutoff point and V_{u} does not exceed (3/4) ϕV_{n}.

Standard cut off and bent points for bars in approximately equal spans with uniformly distributed loading:

(a)

Not more than $1 / 2$ the tensile steel is to be cut off or bent

EX:simply beam, clear span 7.6 m , service load[DL= $10.5 \mathrm{kN} / \mathrm{m}$ (including its own weight), LL=15.8kN/m)], fc'=28 MPa, fy=414MPa, stirrups Ø10mm with a cover of 38 mm at spacing less than ACI Code maximum, The reinforcement consists of three bars $\emptyset 32 \mathrm{~mm}$ at effective depth of 406 mm , one of which is to be discontinued where no longer needed.

1. Calculate the point where the center bar can be discontinued.
2. Check to be sure that adequate embedded length is provided for continued and discontinued bars.
3. If $\emptyset 10 \mathrm{~mm}$ bars are used for transverse reinforcement, specify special reinforcing details in the vicinity where the $\emptyset 32 \mathrm{~mm}$ bar is cut off.
4. Could two bars be discontinued rather than one.

Solution:

$\operatorname{Span}=\min (7.6+0.48=8.08 \mathrm{~m}, 7.6+0.33=7.93 \mathrm{~m})=7.93 \mathrm{~m}$ $\mathrm{Wu}=1.2 * 10.5+1.6 * 15.8=38 \mathrm{kN} / \mathrm{m}$
$\mathrm{Ru}=38 * 7.93 / 2=150.7 \mathrm{kN}$

1. As discontinued bars $=\mathbf{2 \emptyset 3 2}=\mathbf{1 6 0 8} \mathrm{mm}^{2}$
$\rightarrow \rho_{\text {discontinued }}=\frac{1608}{330 * 406}=0.012\binom{>\rho_{\text {min }}}{<\rho_{\text {max }}} \rightarrow$
$M u_{\text {discontinued }}$

$$
\begin{aligned}
& =0.9 * 0.012 * 0.33 * 0.406^{2} \\
& * 414\left(1-0.59 * 0.012 * \frac{414}{28}\right)=0.218 M N . m
\end{aligned}
$$

Assume external ultimate moment $=218 \mathrm{kN} . \mathrm{m}$ at a distance $=\mathrm{X}$ from support.

$$
\begin{aligned}
& M u_{\text {external }}=R u \cdot X-\frac{W u \cdot X^{2}}{2}=150.7 X-\frac{38 X^{2}}{2} \\
& \quad=150.7 X-19 X^{2}
\end{aligned}
$$

$$
M u_{\text {external }}=M u_{\text {internal }} \rightarrow 218=150.7 X-19 X^{2} \rightarrow X
$$

$$
=\binom{1.9 m}{6.03 m} \text { T.C.P }
$$

$$
\text { A.C.P=1.9-max }(\mathrm{d}, 12 \mathrm{db})=1.9-\max (0.406,12 * 32 / 1000=0.384)
$$

$$
=1.5 \mathrm{~m} \text { from support }
$$

2. Check Ld

-For 3 Ø32 bars(discontinued)

$* \mathrm{Sc}=(330-2 * 38 * 2 * 10-3 * 32) /(3-1)=69 \mathrm{~mm}>2 \mathrm{db}=2 * 32=64 \mathrm{~mm}$ O.K
*clear cover $=38+10=48 \mathrm{~mm}>\mathrm{db}=32 \mathrm{~mm}$ O.K
$\emptyset=32 \mathrm{~mm}>22 \mathrm{~mm} \rightarrow l_{d}=\left(\frac{3}{5} \frac{f y \alpha \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b=\left(\frac{3}{5} * \frac{414 * 1 * 1 * 1}{\sqrt{28}}\right) *$
$32=1502 \mathrm{~mm}$
Available \quad distance $(\mathrm{X} 1)=\mathrm{L} / 2-\mathrm{ACP}=7.93 / 2-1.5=2.465 \mathrm{~m}>l_{d}=$ $1.502 \mathrm{~m} \mathrm{O.K}$

- For 2 Ø32 bars(continued)

$* \mathrm{Sc}=(330-2 * 38 * 2 * 10-2 * 32) /(2-1)=170 \mathrm{~mm}>2 \mathrm{db}=2 * 32=64 \mathrm{~mm}$ O.K

* clear cover $=38+10=48 \mathrm{~mm}>\mathrm{db}=32 \mathrm{~mm}$ O.K
$\emptyset=32 \mathrm{~mm}>22 \mathrm{~mm} \rightarrow l_{d}=\left(\frac{3}{5} \frac{f y \alpha \beta \lambda}{\sqrt{f c^{\prime}}}\right) d b=\left(\frac{3}{5} * \frac{414 * 1 * 1 * 1}{\sqrt{28}}\right) *$
$32=1502 \mathrm{~mm}$
Available distance $(\mathrm{X} 2)=\mathrm{TCP}=1.9>l_{d}=1.502 \mathrm{~m} \mathrm{O}$. K

3. Vu at $\mathrm{ACP}=150.7-38 * 1.5=93.7 \mathrm{kN}$

$$
\begin{aligned}
& V_{\mathrm{c}}=\frac{1}{6} * \sqrt{28} * 0.33 * 0.406 * 1000=118 k N \\
& V u=\emptyset(V c+V s)
\end{aligned}
$$

$$
93.7=0.75(118+V s) \rightarrow V s=6.9 k N \rightarrow V s=\frac{A_{v} f y d}{S}=A_{v}
$$

$$
=\frac{V s . S}{f y d}=\frac{6.9 * 1000 S}{414 * 406}=0.041 S
$$

$$
\operatorname{Av}_{\text {additional }}=\frac{0.42 b_{w} S}{f y_{t}}=\frac{0.42 * 330 * S}{414}=0.335 S
$$

$A v_{\text {total }}=A v_{\text {additional }}+A v_{\text {shear }+ \text { torsion }}$
$A v_{\text {total }}=0.335 S+0.041 S=0.376 S$
$0.376 \mathrm{~S}=2 * 78$

$\mathrm{S}=415 \mathrm{~mm}$

$\beta_{d}=\frac{A s_{\text {cutoff }}}{A s_{\text {total }}}=\frac{1}{3}$
$S_{\max }=\frac{d}{8 \beta_{d}}=\frac{406}{8 * \frac{1}{3}}=152 \mathrm{~mm}$
$S=415 \mathrm{~mm}>S_{\max }=152 \mathrm{~mm}$
\rightarrow use $\emptyset 10 @ 150 \mathrm{~mm} \frac{c}{c}$ at distance $\frac{3}{4} d=\frac{3}{4} * 406$
$=305 \mathrm{mmfrom}$ termination point
No of stirrups $=305 / 150=2+1=3$

