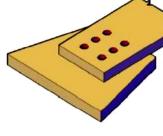


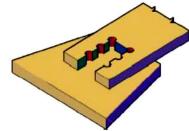
DESIGN OF STEEL STRUCTURES

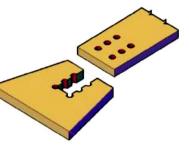
Al-Mustaqbal University College

2.4 Block shear failure

For certain connection configurations, a segment or "block" of material at the end of the member can tear out.







Tension member

Block shear in Member

Block shear in Gusset Plate

The available strength according to AISC Specifications is:

$$R_n = 0.6 F_u A_{nv} + U_{bs} F_u A_{nt} \le 0.6 F_y A_{gv} + U_{bs} F_u A_{nt}$$
$$P_{bs} = \emptyset R_n$$

where:

 $\phi = 0.75$

 R_n : block shear available strength

 P_{bs} : block shear rupture strength

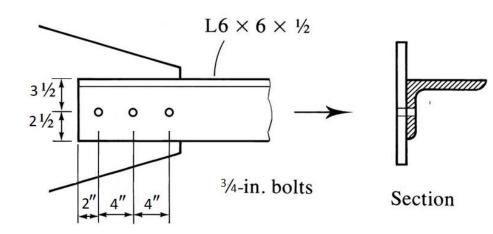
 A_{qv} : Gross area subjected to shear

 A_{nv} : Net area subjected to shear

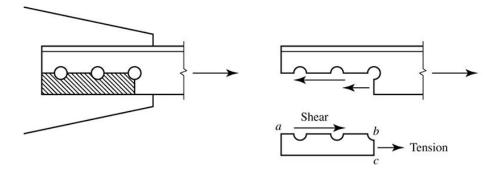
 A_{nt} : Net area subjected to tension

 U_{bs} : Block shear factor always equal 1.

Example No. 1: A steel angle $L6 \times 6 \times \frac{1}{2}$ using A36 steel is subjected to tensile load. Determine the block shear rupture strength.



Solve:



Steel and Section Properties

 $Fy = 36 \, ksi, Fu = 58 \, ksi \, (Table \, 2 - 3)$

 $L_v = 2 + 4 + 4 = 10^{\prime\prime}$

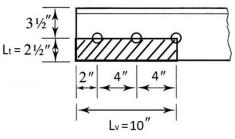
 $L_t = 2.5''$

 A_{gv} = gross area subjected to shear (in^2)

$$A_{gv} = L_v \cdot t = 10 \times \frac{1}{2} = 5 \ in^2$$

 $A_{nv} =$ net area subjected to shear (in^2)

$$A_{nv} = A_{gv} - A_{hole} = L_v \cdot t - n \, d_h \cdot t$$



 $A_{nv} = 5 - 2.5 \left(\frac{3}{4} + \frac{1}{8}\right) \times \frac{1}{2} = 3.91 \ in^2$ A_{nt} = net area subjected to tension (in^2) $A_{nt} = A_{gt} - A_{hole} = L_t \cdot t - n \, d_h \cdot t$ $A_{nt} = 2.5 \times \frac{1}{2} - 0.5 \left(\frac{3}{4} + \frac{1}{8}\right) \times \frac{1}{2} = 1.03 \ in^2$ R_n : block shear available strength $R_n = 0.6 F_u A_{nv} + U_{bs} F_u A_{nt} = 0.6 \times 58 \times 3.91 + 1 \times 58 \times 1.03$ $R_n = 195.8 \, kips$ OR $R_n = 0.6 F_y A_{gv} + U_{bs} F_u A_{nt} = 0.6 \times 36 \times 5 + 1 \times 58 \times 1.03$

 $R_n = 167.7 \ kips \ (Control)$

Choose small value $R_n = 167.7 kips$

*P*_{bs}: block shear rupture strength

 $P_{bs} = \emptyset R_n = 0.75 \times 167.7 = 125.8 kips$

2.5 Slenderness Ratio

To prevent the local sagging of the tension member, there is a maximum limitation to the length (L) of the member which depends on the minimum radius of gyration (r).

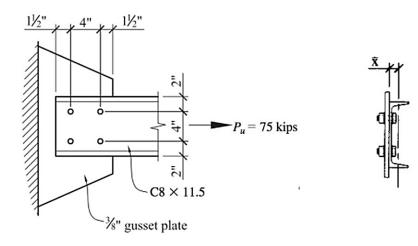
$$\frac{L}{r_{min}} \le 300$$

Example: For the previous example, compute the maximum permissible length of the tension member.

Solve: Section properties $L6 \times 6 \times \frac{1}{2}$ $r_x = 1.86 in$ $r_y = 1.86 in$ $r_{z} = 1.18 in$ $L_{maximum} \le 300 \times 1.18 = 354 \ in = 29.5 \ ft$

Example No. 2: The channel is ASTM A36; it is connected with four 5/8 " diameter bolts.

- a) Determine if the channel is adequate for the applied tension load shown in Figure. Neglect block shear.
- b) Determine if the channel is adequate for the applied tension load considering block shear.



Solve:

a) If the channel is adequate for the applied tension load. Neglect block shear.

1) Steel and Section Properties

$$Fy = 36 \, ksi, Fu = 58 \, ksi \, (Table \, 2 - 3)$$

 $Ag = 3.37 in^2$, tw = 0.22'', $\bar{x} = 0.572''$

2) Ultimate Applied Load

Pu = 75 kips

3) Design strength

 $\emptyset t Pn \geq Pu$

From gross area:

 $\phi t Pn = 0.9 Fy Ag = 0.9 \times 36 \times 3.37$

 $\phi t Pn = 109 kips > 75 kips \therefore ok$

From effective area:

$$\phi t Pn = 0.75 Fu Ae$$

$$Ae = U \cdot An$$

$$U = 1 - \frac{\bar{x}}{\ell} = 1 - \frac{0.572}{4} = 0.857''$$

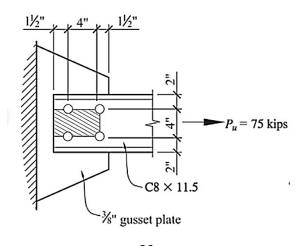
$$An = Ag - n d_h t$$

$$An = 3.37 - 2 \times \left(\frac{5}{8} + \frac{1}{8}\right) \times 0.22 = 3.04 in^2$$

$$Ae = 0.857 \times 3.04 = 2.61 in^2$$

 $\emptyset t Pn = 0.75 \times 58 \times 2.61 = 113 > 75 kips :: ok$

b) If the channel is adequate for the applied tension load considering block shear.

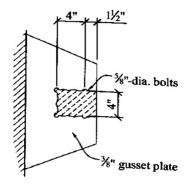


Maryam Hameed Nasir

1) Steel and Section Properties $Fy = 36 \, ksi, Fu = 58 \, ksi \, (Table \, 2 - 3)$ $L_{\nu} = 2(4 + 1.5) = 11^{\prime\prime}$ $L_t = 4''$ $A_{gv} = L_v \cdot t = 11 \times 0.22 = 2.42 \ in^2$ $A_{nv} = A_{gv} - A_{hole}$ $A_{nv} = L_v \cdot t - n \, d_h \cdot t$ $= 2.42 - 3\left(\frac{5}{8} + \frac{1}{8}\right) \times 0.22 = 1.92 \ in^2$ $A_{nt} = A_{gv} - A_{hole}$ $A_{nt} = L_t \cdot t - n \, d_h \cdot t$ $= 4 \times 0.22 - 1\left(\frac{5}{8} + \frac{1}{8}\right) \times 0.22 = 0.715 \ in^2$ $R_n = 0.6 F_u A_{nv} + U_{bs} F_u A_{nt} = 0.6 \times 58 \times 1.92 + 1 \times 58 \times 0.715$ $R_n = 108.3 \, kips$ OR $R_n = 0.6 F_y A_{gv} + U_{bs} F_u A_{nt} = 0.6 \times 36 \times 2.42 + 1 \times 58 \times 0.715$ $R_n = 93.74 \, kips \, (Control)$ $P_{bs} = \emptyset R_n = 0.75 \times 93.74 = 70.31 \ kips < 75 \ kips$ Not ok \therefore So the channel is not adequate in block shear

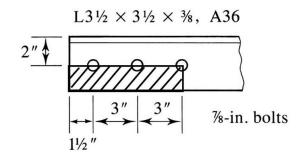
H.W:

1) For the previous example (b), Determine if the gusset plate is adequate for the applied tension load considering block shear.



Ans: $P_{bs} = 119 \ kips > 75 \ kips$

2) Determine the block shear strength for the following section.



Ans: $P_{bs} = 61.88 \ kips$