Al-Mustaqbal University College

Department of Medical Instrumentation

Techniques Engineering

Derivative and Application of derivative
Lecturer : Lect. Dr. Marwan A. Madhloom

Lecture Two: The Derivative

Definition: The derivative of the function $y=f(x)$ with respect to the variable x is the function y^{\prime} or $f(x)$ whose value at x is

$$
f\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Provided this limit exists.
Example: Use definition to find $\frac{d y}{d x}$ if $y=f(x)=x^{3}$
Sol:

$$
\begin{aligned}
& \frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})}{h} \longrightarrow \lim _{h \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\mathrm{h})^{3}-\mathrm{x}^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\mathrm{x}^{3}+3 \mathrm{x}^{2} \mathrm{~h}+3 \mathrm{~h}^{2} \mathrm{x}+\mathrm{h}^{3}-\mathrm{x}^{3}}{h} \longrightarrow \lim _{h \rightarrow 0}\left(3 \mathrm{x}^{2}+3 \mathrm{xh}+\mathrm{h}^{2}\right)=3 \mathrm{x}^{2}
\end{aligned}
$$

Differentiation Rules:

1-Derivative of a constant function.

If $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{c}$ where c is constant then,

$$
\frac{d y}{d x}=f(x)=0
$$

Example: $f(x)=1$ then $\frac{d y}{d x}=f(x)=0$

2-Power rule for positive integers:

If n is a positive integer, and $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\boldsymbol{n}}$;then

$$
f(x)=\frac{d y}{d x}=n x^{n-1}
$$

Example: $y=f(x)=x^{3}$
Sol: $\quad \quad f(x)=\frac{d y}{d x}=3 x^{2}$

3-Derivative constant multiple rule:

If u is a differentiable function of $\mathrm{x} f(x)=c u(x)$, and c is a constant, then

$$
\frac{d y}{d x}=\dot{f}(x)=\operatorname{cu}^{\prime}(x)
$$

Example: $f(x)=5 x^{6}$ then $\frac{d y}{d x}=6 * 5 x=30 x^{5}$

4-Derivative Product rule:

If u and v are differentiable at x, then so is their product $u v$, and

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Example: Find the derivative of $y=\left(x^{2}+8 x\right)\left(x^{3}-1\right)$
Sol:

$$
\frac{d y}{d x}=\left(x^{2}+8 x\right) \cdot 3 x^{2}+\left(x^{3}-1\right) \cdot(2 x+8)
$$

5-Derivative quotient rule:

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient $\frac{u}{v}$ is differentiable at x , and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

Example: Find the derivative of $\quad y=\frac{t-t^{2}}{t+4}$
Sol:

$$
\frac{d}{\mathrm{dt}}\left(\frac{t-t^{2}}{t+4}\right)=\frac{(t+4) \cdot(1-2 t)-\left(t-t^{2}\right) \cdot 1}{(t+4)^{2}}=\frac{\left.(t+4)(1-2 t)-\left(t-t^{2}\right)\right]}{(t+4)^{2}}
$$

Derivative Rules:

General formulas

(1) $\frac{d}{d x}(c)=O$ (The derivative of a constant function is zero.)
(2) $\frac{d}{d x}(x)=1$ (The derivative of the identity function is 1.)
(3) $\frac{d}{d x}(c u)=c \frac{d u}{d x}$
(Constant Multiple)
(4) $\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}$
(Sum Rule)
(5) $\frac{d}{d x}(u-v)=\frac{d u}{d x}-\frac{d v}{d x}$
(Difference Rule)
(6) $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
(Product Rule)
(7) $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$ provided that $v \neq 0$ (Quotient Rule)
(8) $\frac{d}{d x}\left(\frac{1}{x}\right)=\frac{-1}{x^{2}} \quad$ provided that $x \neq 0$
(9) $\frac{d}{d x}\left(x^{m}\right)=m x^{m-I}$
(Power Rule)

Trigonometric functions
(1) $\frac{d}{d x}(\sin x)=\cos x$
(2) $\frac{d}{d x}(\cos x)=-\sin x$
(3) $\frac{d}{d x}(\tan x)=\sec ^{2} x$
(4) $\frac{d}{d x}(\cot x)=-\csc ^{2} x$
(5) $\frac{d}{d x}(\sec x)=\sec x \tan x$
6) $\frac{d}{d x}(\csc x)=-\csc x \cot x$

Chain rule

Let $u=g(x)$ and $y=f(u)$.
Then, $y=f(u)=f(g(x))$
$y^{\prime}=f^{\prime}(g(x))^{*} g^{\prime}(x)$
or
$\frac{d y}{d x}=\frac{d y}{d u} * \frac{d u}{d g}$
Where $\frac{d y}{d x}$ is evaluated at $t=g(x)$

Example:

$$
\begin{aligned}
& y=x^{3}+\frac{4}{3} x^{2}-5 x+1 \rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(\frac{4}{3} x^{2}\right)- \\
& \frac{d}{d x}(5 x)+\frac{d}{d x}(1) \\
& \quad=3 x^{2}+\frac{4}{3} * 2 x-5+0=3 x^{2}+\frac{8}{3} x-5
\end{aligned}
$$

Example:

$$
\begin{aligned}
& y=\frac{x^{2}-1}{x^{2}+1} \text { we apply the quotient with } u=x^{2}-1 \text { and } v=x^{2}+1 \\
& \begin{array}{c}
\frac{d y}{d x}=\frac{\left(x^{2}+1\right) * 2 x-\left(x^{2}-1\right) * 2 x}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{3}+2 x-2 x^{3}+2 x}{\left(x^{2}+1\right)^{2}} \\
=\frac{4 x}{\left(x^{2}+1\right)^{2}}
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& y=\left(3 x^{2}+1\right)^{2} \\
& \quad=2\left(3 x^{2}+1\right)^{2-1} \cdot\left(3 * 2 x^{2-1}+0\right)=2\left(3 x^{2}+1\right) * 6 x \\
& \quad=36 x^{3}+12 x
\end{aligned}
$$

Example: Find $\frac{d y}{d x}$ of the following functions $y=\sin \left(x^{2}+2 x-5\right)$
Sol:

$$
\frac{d y}{d x}=\cos \left(x^{2}+2 x-5\right) \cdot 2 x+2=(2 x+2) \cos \left(x^{2}+2 x-5\right)
$$

Example $y=\tan (2 x) \cos \left(x^{2}+1\right)$
Sol:

$$
\begin{aligned}
& \frac{d y}{\mathrm{dx}}=-\tan (2 x) \sin \left(x^{2}+1\right) \cdot 2 \mathrm{x}+\cos \left(x^{2}+1\right) \sec ^{2}(2 x) \cdot 2 \\
& \quad \frac{d y}{\mathrm{dx}}=-2 \mathrm{x} \tan (2 \mathrm{x}) \sin \left(x^{2}+1\right) \cdot+2 \cos \left(x^{2}+1\right) \sec ^{2}(2 x)
\end{aligned}
$$

Second and Higher- Order Derivatives:

If $f(x)$ is a given function then
$\frac{d y}{d x}=f(x)$ is first derivaive of y.
$\frac{d^{2} y}{d x^{2}}=\dot{f}(x)$ is second derivaive of y.
$\frac{d^{3} y}{d x^{3}}=\bar{\prime}(x)$ is third derivative of y. And so on...
Then, in general: $\frac{d^{n} y}{d x^{n}}=f^{n}(x)=y^{n}$

Higher Derivatives:
If $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then
First derivative: $\quad y^{\prime}, f^{\prime}(x), \frac{d y}{d x}$
Second derivative: $y^{\prime \prime}, f^{\prime \prime}(x), \frac{d^{2} y}{d x^{2}}$
Third derivative: $y^{\prime \prime \prime}, f^{\prime \prime \prime}(x), \frac{d^{3} y}{d x^{3}}$
nth derivative: $y^{n}, f^{n}(x), \frac{d^{n} y}{d x^{n}}$

Distance, Velocity and Acceleration:
Time :
Distance $\quad-\mathrm{s}(\mathrm{t})$
Velocity
Acceleration - a(t) $\frac{d v}{d t}$ or $\frac{d^{2} s}{d t^{2}}$

Example: If $y=\left(x^{2}+2 x+3\right)^{2}$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
Sol:

$$
\begin{aligned}
& \frac{d y}{d x}=y^{\prime}=2 \cdot\left(x^{2}+2 x+3\right)(2 x+2) \\
& \frac{d^{2} y}{d x^{2}}=2\left[\left(x^{2}+2 x+3\right) \cdot 2+(2 x+2) \cdot(2 x+2)\right] \\
& \frac{d^{2} y}{d x^{2}}=4\left(x^{2}+2 x+3\right)+2(2 x+2)^{2}
\end{aligned}
$$

Example: A body moves along a straight line according to the law $s=\frac{1}{2} t^{3}-2 t$. Determine its velocity and acceleration at the end of 2 seconds.

Solution

$$
\mathrm{v}=\frac{d s}{d t}=\frac{3}{2} t^{2}-2=\frac{3}{2} 2^{2}-2=4 \mathrm{~m} / \mathrm{s}, \quad \mathrm{a}=\frac{d v}{d t}=3 t=3 * 2=6 \mathrm{~m} / \mathrm{s}{ }^{2}
$$

Chain rule:

If y is a function of x, say $y=f(x)$, and x is a function of t , say $x=g(t)$ then y is a function of t :

$$
\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

This formula is called chain rule.
Example: If $y=x^{3}-x^{2}+5$ and $x=2 t^{2}+t$, find $\frac{d y}{d t}$ at $t=1$.
Sol:

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}=\left(3 x^{2}-2 x\right)(4 t+1) \\
& \text { at } t=1 \rightarrow x=(2) 1^{2}+1=3 \\
& \qquad \frac{d y}{d t}=\left(3 * 3^{2}-2 * 3\right)(4 * 1+1)=105
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { Example } \text { : if } \mathrm{y}=\mathrm{u}^{3}-1 \text { and } \mathrm{u}=2 \mathrm{x}, \\
& \text { find } \frac{d y}{d x} \text {. } \\
& \frac{d y}{d x}=\frac{d y}{d u} * \frac{d u}{d x}=3 \mathrm{u}^{2} * 2=6(2 \mathrm{x})^{2}=24 \mathrm{x}^{2}
\end{aligned}
$$

Implicit Differentiation:

Most of the functions we have dealt with so far have been described by an equation of the form $y=f(x)$ that expresses y explicitly in terms of the
variable x . We have learned rules for differentiating functions defined in this way.

Example: Find $\frac{d y}{d x}$ for the equation $y^{2}+x^{3}-9 x y=0$
Sol:

$$
\begin{aligned}
& 2 y \frac{d y}{d x}+3 x^{2}-\left(9 x \frac{d y}{d x}+9 y\right)=0 \rightarrow 2 y \frac{d y}{d x}+3 x^{2}-9 x \frac{d y}{d x}-9 y=0 \\
& 2 y \frac{d y}{d x}-9 x \frac{d y}{d x}=9 y-3 x^{2} \rightarrow \frac{d y}{d x}(2 y-9 x)=9 y-3 x^{2} \\
& \frac{d y}{d x}=\frac{9 y-3 x^{2}}{2 y-9 x}
\end{aligned}
$$

Example: $y^{2}=\frac{x-1}{x+1}$
Sol:

$$
\begin{aligned}
& 2 y \frac{d y}{d x}=\frac{(x+1) \cdot 1-(x-1) \cdot 1}{(x-1)^{2}}=\frac{x+1-x+1}{(x-1)^{2}}=\frac{2}{(x-1)^{2}} \\
& \frac{d y}{d x}=\frac{2}{2 y(x-1)^{2}}=\frac{1}{y(x-1)^{2}}
\end{aligned}
$$

Application of Differentiation

Indeterminate Forms and Hôpital's Rule:

Suppose that $f(a)=g(a)=0$, that $\dot{f}(a), \dot{g}(a)$ exist, and that $\dot{g}(a) \neq 0$

Then;

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{f(a)}{\dot{g}(a)}
$$

Example: Using Hospital's Rule and find the following:

1) $\lim _{x \rightarrow 0} \frac{3 x-\sin x}{x}=\left.\frac{3-\cos x}{1}\right|_{x=0}=2$
2) $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}=\left.\frac{\frac{1}{2 \sqrt{x+1}}}{1}\right|_{x=0}=\frac{1}{2}$
3) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=\left.\frac{1}{2 x}\right|_{x=2}=\frac{1}{4}$
4) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{4 x^{3}-x-3}=\left.\frac{3 x^{2}}{12 x^{2}-1}\right|_{x=1}=\frac{3}{11}$

H.W

1. If $y=2 x^{3}-4 x^{2}+6 x-5$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d x^{3}}$
2. Use implicit differentiation to find $d y / d x$ for $x \cos (2 x+3) y \sin x$
3. Use implicit differentiation $\mathrm{x}^{2}+\mathrm{y}^{2}-25=0$
4. find $\frac{d y}{d x} y=6 u-9, u=x^{4} / 2$
5. $y=\sin ^{2}\left(x^{2}+\frac{1}{x^{2}}\right)$
6. If $y=\tan ^{-3}(\sin 2 x)$, find $\frac{d y}{d x}$
