Chapter Two: Tension Members

AISC manual / Chapter D

2.1 General

Defined are structural elements that subjected to axial tensile forces along their longitudinal axis such as truss members, bracing for buildings and bridges, cables in suspension bridge, bars and rods.

2.2 Design Methods for Structural Steel Members

Two design methods are acceptable for deigning structural steel members and connections:

1. Allowable Strength Design. (ASD).
2. Load and Resistance Factor Design (LRFD)

2.2.1 ASD Design Method

The mean properties of this method:

1. Older but still use
2. Use service level loads (actual loads) to structure:

$$
P_{a}=P_{L}+P_{D}
$$

3. The actual stress
$f_{t}=\frac{P a}{A_{g}}$

where:
f_{t} : The actual tension stress, $k s i$.
Pa: Applied tensile force, kips
$A_{g}:$ the gross sectional area, in 2
4. Use factor of safety Ω Omega, where:

$$
\text { Allowable strength }(P a) \leq \frac{\text { Nominal strength }\left(P_{n}\right)}{\Omega}
$$

a) Based on the Yielding in the gross section $\left(A_{g}\right)$, Allowable strength:
$\frac{P_{n}}{\Omega}=F_{t} A_{g}=0.6 F y A_{g}$
Here $\boldsymbol{\Omega}=1.67$ (factor of safety)
$\boldsymbol{F} \boldsymbol{y}=$ Minimum yield stress. (AISC Table (2-3), (2-4))
b) Based on the Fracture on the effective section $\left(A_{e}\right)$, Allowable strength:

$$
\frac{P_{n}}{\Omega}=F_{t} A_{e}=0.5 F u A_{e}
$$

Here $\boldsymbol{\Omega}=2$ (factor of safety)
$\boldsymbol{F u}:$ Minimum tensile stress. (AISC Tables (2-3), (2-4))
$\boldsymbol{A}_{\boldsymbol{e}}$: Effective area of the tension member. $A_{e}=U \cdot A_{n}$
A_{n} : Net area of the tension member
U : shear lag factor

2.2.2 Load and Resisting Factor Design (LRFD)

The mean properties of this method:

1. More recent and common
2. Use Ultimate loads:

$$
P_{u}=1.6 P_{L}+1.2 P_{D}
$$

3. The actual stress

$$
f_{t}=\frac{P_{u}}{A_{\boldsymbol{g}}}
$$

4. Use factor of safety \emptyset Phi, where:

Ultimate strength $\left(P_{u}\right) \leq \emptyset \times$ Nominal strength $\left(P_{n}\right)$
a) Based on the Yielding in the gross section $\left(A_{g}\right)$, Ultimate strength:

$$
\emptyset P_{n}=\emptyset F y A_{g}
$$

Here $\emptyset=0.9$ (factor of safety)
b) Based on the Fracture on the effective section $\left(A_{e}\right)$, Ultimate strength:

$$
\emptyset P_{n}=\emptyset F u A_{e}
$$

Here $\emptyset=0.75$ (factor of safety)

2.3 How to Calculate Gross Area, Net Area and Effective Area

a) Gross Area $(\boldsymbol{A g})$:
b) Net $\operatorname{Area}\left(\boldsymbol{A}_{\boldsymbol{n}}\right)$

The net area is described as follows:
$A_{n}=A_{g}-n d_{h} t+\sum \frac{s^{2}}{4 g} t$
$d_{h}=d_{b}+\frac{1}{8}$
where:
$\boldsymbol{d}_{\boldsymbol{h}}$: hole diameter
$\boldsymbol{d}_{\boldsymbol{b}}$: bolt diameter
t : thickness

- From Figure the net area through the line ABDE calculate as follow:

$$
A_{n}=A_{g}-n d_{h} t
$$

- To calculate the net area through the line ABCDE, another term $\left(\frac{s^{2}}{4 g} t\right)$ is added to the above equation and became as following:

$$
A_{n}=A_{g}-n d_{h} t+\sum \frac{s^{2}}{4 g} t
$$

Where:
\boldsymbol{s} : Longitudinal center to center spacing between two consecutive holes.
g : Transverse center to center spacing between two consecutive holes.
Staggered connections in sections:

c) Effective area $\left(A_{e}\right)$:

When the section has many parts (like angles, channels and W, M and S sections), and the connection attached not to all these parts, shear lag phenomena will reduce the strength capacity of the section. This reduction factor introduces by AISC manual (section D3.3 Part 16 Page 28) Table D3.1.

The effective area of a tension member is described as follows:

- For bolted connections, the effective net area is,
$A_{e}=U \cdot A_{n}$
- For welded connections, effective area is,
$A_{e}=U \cdot A_{g}$
Where:
$\mathrm{U}=$ Shear lag factor, is determined as shown in AISC Table D3.1.

TABLE D3.1 Shear Lag Factors for Connections to Tension Members			
Case	Description of Element	Shear Lag Factor, U	Example
${ }^{1}$	All tension members where the tension load is transmitted directly to each of cross-sectional elements by fasteners or welds. (except as in Cases 3, 4,5 and 6)	$U=1.0$	
2	All tension members, except plates and HSS, where the tension load is trans mitted to some but not all of the crosssectional elements by fasteners or longitudinal welds (Alternatively, for W, M, S and HP. Case 7 may be used.)	$U=1 \chi^{\bar{x}} / 1$	
${ }^{3}$	All tension members where the tension load is transmitted by transverse welds to some but not all of the cross-sectional elements.	$\begin{gathered} U=1.0 \\ \text { and } \\ A_{n}=\text { area of the directly } \\ \text { connected elements } \end{gathered}$	
4	Plates where the tension load is transmitted by longitudinal welds only.	$\begin{aligned} & I \geq 2 w \ldots U=1.0 \\ & 2 w>I \geq 1.5 w \ldots U=0.87 \\ & 1.5 w>1 \geq w U=0.75 \end{aligned}$	
5	Round HSS with a single concentric gusset plate	$\begin{aligned} & I \geq 1.3 D \ldots U=1.0 \\ & D \leq I<1.3 D \ldots U=1-x / / I \\ & x=D / \pi \end{aligned}$	\sim

| 6 | Rectangular HSS | with a single con-
 centric gusset plate | $I \geq H \ldots U=1-X / I$
 $B^{2}+2 B H$ |
| :--- | :--- | :--- | :--- | :--- |

$I=$ length of connection, in. (mm); $w=$ plate width, in. (mm); $\bar{x}=$ connection eccentricity, in. (mm); $B=$ overall width of rectangular HSS member, measured 90 degrees to the plane of the connection, in. (mm); $H=$ overall height of rectangular HSS member, measured in the plane of the connection, in. (mm)

Measurement of Connection Centroid:

\bar{x} : connection eccentricity, in. It is the distance from the center of the section to the place of attachment obtained from the code.
(a) Bolted

(b) Welded

ℓ : length of connection, in.

For Examples:

$$
\begin{aligned}
& \frac{b_{f}}{d}=0.394<\frac{2}{3} \\
& U=0.85
\end{aligned}
$$

$\frac{b_{f}}{d}=0.794>\frac{2}{3}$ (for parent shape)
$U=0.90$

Example No.1: A plate of dimensions $\left(\frac{1}{2} \times 8\right)$ in made from A36 steel is used as a tension member. It is connected to a gusset plate with four $\left(\frac{7}{8}\right.$ in $)$ in diameter bolts as shown in Figure.
A) What is the allowable strength for ASD?
B) What is the design strength for LRFD?

Solve:

Steel and section properties:
$F y=36 k s i, F u=58 k s i($ from Table 2-4)
$A_{g}=1 / 2 \times 8=4$ in 2

a) ASD method

From gross area:
$P_{n} / \Omega=0.6$ Fy $A_{g}=0.6 \times 36 \times 4=86.4$ kips
From effective area:
$P_{n} / \Omega=0.5$ Fu A_{e}
$A_{e}=U \cdot A_{n}, \quad U=1$
$A_{n}=A_{g}-n d_{h} t=4-2 \times\left(\frac{7}{8}+\frac{1}{8}\right) \times \frac{1}{2}=3 \mathrm{in}^{2}$
$P_{n} / \Omega=0.5 \times 58 \times 3=87 \mathrm{kips}$
Choose small value $P a=86.4$ kips

b) LRFD method

From gross area:
$\emptyset P n=0.9$ Fy $A_{g}=0.9 \times 36 \times 4=129.6$ kips

From net area:

$$
\emptyset P n=0.75 \mathrm{Fu} A_{e}=0.75 \times 58 \times 3=130.5 \text { kips }
$$

Choose \emptyset Pn $=129.6$ kips
Example No.2: Determine the effective area for the single angle shown in Figure. The holes are made for $5 / 8$ in diameter bolts.

Solve:

Section Properties:

$L 6 \times 6 \times \frac{1}{2}: A g=5.77 \mathrm{in}^{2}, \quad t=\frac{1^{\prime \prime}}{2}, \quad \bar{x}=1.67^{\prime \prime}$
$A e=U \cdot A n$
$U=0.6$ Case 8 (Table D3.1)
$U=1-\frac{\bar{x}}{\ell}$ Case 2
$U=1-\frac{1.67}{3+3}=0.722$
Use the larger U which is 0.722
$A n=A g-n d_{h} t$
$A n=5.77-2 \times\left(\frac{5}{8}+\frac{1}{8}\right) \times \frac{1}{2}=5.02 \mathrm{in}^{2}$
$A e=5.02 \times 0.722=3.624 i n^{2}$

Example No.3: Consider the welded single angle $L 6 \times 6 \times \frac{1}{2}$ tension member made from A36 steel shown below. Calculate the tension design strength.

Solve:

1) Steel and Section Properties

A36: Fy $=36$ ksi,Fu $=58$ ksi $($ Table $2-3)$
$L 6 \times 6 \times \frac{1}{2}: A g=5.77 \mathrm{in}^{2}, \quad t=\frac{1^{\prime \prime}}{2}, \quad \bar{x}=1.67^{\prime \prime}$

2) Design strength

$P u \leq \emptyset t P n$

From gross area:

$\emptyset t P n=0.9$ Fy $A g=0.9 \times 36 \times 5.77=186.95$ kips

From effective area:

$\emptyset t P n=0.75 \mathrm{Fu} A e$
For welded: $\quad A e=U \cdot A g, \quad U=1-\frac{\bar{x}}{\ell}$ Case 2
$U=1-\frac{1.67}{5.5}=0.696 \approx 0.7$
or

4	Plates where the tension load is transmit- ted by longitudinal welds only.	$I \geq 2 w \ldots U=1.0$ $2 w>I \geq 1.5 w \ldots U=0.87$ $1.5 w>I \geq w \ldots U=0.75$	

$\ell=5.5, \quad w=6 \quad$ Case 4

$$
1.5 w=9 \geq \ell \geq w=6 \quad \therefore U=0.75
$$

Use large value $U=0.75$
$A e=0.75 \times 5.77=4.33$
$\emptyset t P n=0.75 \times 58 \times 4.33=188.36$ kips

Example No. 4: Compute the smallest net area for the plate shown in Figure. The holes are ($1^{\prime \prime}$) diameter bolts. Plate thickness is (3/4').

Solve:
$A g=16 \times \frac{3}{4}=12 \mathrm{in}^{2}$

Path 1:

$A n=A g-n d_{h} t$
$A n=12-2 \times\left(1+\frac{1}{8}\right) \times \frac{3}{4}=10.313 \mathrm{in}^{2}$

Path 2:
$A_{n}=A_{g}-n d_{h} t+\sum \frac{s^{2}}{4 g} t$
$A_{n}=12-3 \times\left(1+\frac{1}{8}\right) \times \frac{3}{4}+\left(2 \frac{3^{2}}{4 \times 5}\right) \times \frac{3}{4}$
$A n=12-2.531+0.675$

$$
=10.14 \mathrm{in}^{2}(\text { Control })
$$

Example No. 5: A $W 10 \times 19$ is connected by 8 bolts in webs arranged in two rows as shown in Figure if the section is made from A992, and loaded by tension force (Dead load $=70$ kips, Live load $=100$ kips). Check the adequacy of the section by using LRFD method. The holes are made for $(5 / 8)$ in diameter bolts.

$W 10 \times 19$
Solve:

1) Steel and Section Properties
$F y=50 k s i, F u=65 k s i($ Table $2-3)$
$A g=5.62 \mathrm{in}^{2}, t w=0.25 \mathrm{in}$

2) Ultimate Applied Load

$P u=1.2 P D+1.6 P L=1.2 \times 70+1.6 \times 100=244$ kips

3) Design strength

$P u \leq \emptyset t P n$

From gross area:

$\emptyset t P n=0.9$ Fy $A g=0.9 \times 50 \times 5.62=252.9$ kips >244 kips $\quad \therefore$ ok

From effective area:

$\emptyset t P n=0.75 F u A e$
$A e=U \cdot A n, \quad U=0.7$ (Case 7) Table D3.1
$A n=A g-n d_{h} t=5.62-2\left(\frac{5}{8}+\frac{1}{8}\right) \times 0.25$

$$
=5.245 \mathrm{in}^{2}
$$

$A e=0.7 \times 5.245=3.6715 \mathrm{in}^{2}$
$\emptyset t P n=0.75 \times 65 \times 3.6715=178.99<244$ kips $\quad \therefore$ Not ok

Example No. 6: A single angle $\left(L 8 \times 6 \times \frac{1}{2}\right)$ with staggered fastener in each leg as shown in figure. A36 steel is used and holes with ($7 / 8 \mathrm{in}$) bolts diameter.
A) What is the allowable strength for ASD?
B) What is the design strength for LRFD?

Solve:
Steel and Section Properties
$F y=36 k s i, F u=58 k s i, A g=6.75 \mathrm{in}^{2}$
Based on gross area:
A) ASD
$\frac{P n}{\Omega t}=0.6 * F y * A g=0.6 * 36 * 6.75=145.8 \mathrm{kips}$
B) LRFD
$\emptyset t \mathrm{Pn}=0.9 \mathrm{Fy} \mathrm{Ag}=0.9 * 36 * 6.75=218.7 \mathrm{kips}$

Based on net area:

Path 1 (abdf):
$A n=A g-n d_{h} t$
$A n=6.75-2\left(\frac{7}{8}+\frac{1}{8}\right) \times \frac{1}{2}=5.75 \mathrm{in}^{2}$

Path 2 (abcdf):
$A_{n}=A_{g}-n d_{h} t+\sum \frac{s^{2}}{4 g} t$
$A_{n}=6.75-3\left(\frac{7}{8}+\frac{1}{8}\right) \times \frac{1}{2}+\left(\frac{1.5^{2}}{4 \times 2.25}+\frac{1.5^{2}}{4 \times 4.75}\right) \times \frac{1}{2}$
$A_{n}=5.43 \mathrm{in}^{2}$
Path 3 (abcdeg):
$A_{n}=A_{g}-n d_{h} t+\sum \frac{s^{2}}{4 g} t$
$A n=6.75-4\left(\frac{7}{8}+\frac{1}{8}\right) \times \frac{1}{2}+\left(\frac{1.5^{2}}{4 \times 2.25}+\frac{1.5^{2}}{4 \times 4.75}+\frac{1.5^{2}}{4 \times 3}\right) \times \frac{1}{2}$
An $=5.03$ in $^{2}($ Control $)$
Path 4 (abdeg):

$A_{n}=A_{g}-n d_{h} t+\sum \frac{s^{2}}{4 g} t$
$A n=6.75-3 \times\left(\frac{7}{8}+\frac{1}{8}\right) \times \frac{1}{2}+\left(\frac{1.5^{2}}{4 \times 3}\right) \times \frac{1}{2}$
$A n=5.34 i n^{2}$
A) $\mathbf{A S D}$
$\mathrm{Pn} / \Omega_{t}=0.5 \mathrm{Fu} \mathrm{Ae}$
$A e=U \cdot A n, \quad U=1$
$P n / \Omega_{t}=0.5 \times 58 \times 5.03=145.87 \mathrm{kips}$
B) LRFD
$\emptyset t P n=0.75 F u A e=0.75 * 58 * 5.03=218.8$ kips

For safe design, we choose the lowest value which is:
145. 8 kips by using ASD Method
218. 7 kips by using LRFD Method

Example No. 7: A double angle shape is shown in Figure. The steel is A36, and the holes are for $1 / 2^{\prime \prime}$ diameter bolts. Assume that $A_{e}=0.75 A_{n}$.
a. Determine the design tensile strength for LRFD.
b. Determine the allowable strength for ASD.

Solve:
ملاحظة: هنالك طريقتين لحل مسائل الdouble angle (الطريقّة الأولى :اعتبار ها زاوية واحدة single angle ومضاعفة كل النتائج كما في المثال الطريقة الثّانية :اعتبار ها شكلين منذ البدايـة.

في كلتا الحالتين خواص double angle من ناحية المساحة و إلى آخره يتم إيجادها من الكود مباشرة Steel and Section Properties
$F y=36 k s i, F u=58 k s i($ Table $2-3), \quad A g=2.41 \mathrm{in}^{2}$

a. The design tensile strength for LRFD:

From gross area:
$\emptyset t P n=0.9$ Fy $A g=0.9 \times 36 \times 2 \times 2.41=156.168$ kips

From effective area:
$\emptyset t P n=0.75 F u A e$
$A e=0.75 A n \quad$ From Example
$A n=A g-n d_{h} t=2.41-2 \times\left(\frac{1}{2}+\frac{1}{8}\right) \times \frac{5}{16}=2.02 \mathrm{in}^{2}$
$A e=0.75 \times 2.02=1.515$ in 2
$\emptyset t P n=0.75 \times 58 \times 2 \times 1.515=131.805$ kips

b. The allowable strength for ASD:

From gross area:
$\frac{P n}{\Omega t}=0.6 \mathrm{Fy} \mathrm{Ag}=0.6 \times 36 \times 2 \times 2.41=104.11 \mathrm{kips}$
From effective area:
$\frac{P n}{\Omega t}=0.5 F u A e$
$A e=0.75$ An From Example
$A n=A g-n d_{h} t=2.41-2 \times\left(\frac{1}{2}+\frac{1}{8}\right) \times \frac{5}{16}=2.02 \mathrm{in}^{2}$
$A e=0.75 \times 2.02=1.515 \mathrm{in}^{2}$
$\frac{P n}{\Omega t}=0.5 \times 58 \times 2 \times 1.515=87.87$ kips \quad Control

Problem:

1. Determine the smallest net area for the sections shown. The holes are for $\mathbf{5 / 8}{ }^{\prime \prime}$ diameter bolts.

Ans: $\mathrm{An}=3.30 \mathrm{in}^{2}$
2. A single - channel tension member, a $\mathbf{C 1 5 \times 3 3 . 9}$, is connected to a gusset plate with $\mathbf{3 / 4}$ "diameter bolts as shown in Figure below. Determine the maximum tensile strength by using LRFD method and A36 steel material.

Ans: $\emptyset t$ Pn $=324$ kips
3. A W -shape member $(\mathbf{W} \mathbf{1 2} \times \mathbf{5 3})$ has connected by two rows of $\left(\mathbf{4} \emptyset \mathbf{1 "}^{\prime \prime}\right)$ diameter bolts in each flange as shown in Figure below. Determine the maximum tensile strength by using LRFD method and A992 steel material.

Ans: $\emptyset t$ Pn $=570.37$ kips
4. Double steel angles ($\mathbf{2} \mathbf{L 6} \times \mathbf{4} \times \mathbf{5} / \mathbf{1 6}$) using $\mathbf{A} 242$ steel subjected to tensile load. Holes are for bolt diameter 7/8' ${ }^{\prime \prime}$. Determine:
a) The tension reduction factor U.
b) The ultimate tensile load Pu using LRFD method.

Ans: $U=0.771, \quad \emptyset t$ Pn $=194.67$ kips

