Ex1: Chemical analysis for type of cement as shown in table:

- 1- What is the type of cement?
- 2- Is the cement accepted with limitation of portland cement? And where used?

Oxide	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	SO ₃	Na ₂ O	K ₂ O
%	64	21	5	3	3	2.8	0.6	0.6

Sum of oxide = 100 %

$$C_3S = 4.07(CaO) - 7.60(SiO_2) - 6.72(Al_2O_3) - 1.43(Fe_2O_3) - 2.85(SO_3)$$

$$C_3S = 4.07(64) - 7.60(21) - 6.72(5) - 1.43(3) - 2.85(2.8) = 55\%$$

$$C_2S = 2.87(SiO_2) - 0.754(C_3S)$$

$$C_2S = 2.87(21) - 0.754(55) = 18.8\%$$

$$C_3A = 2.65(Al_2O_3) - 1.69(Fe_2O_3)$$

$$C_3A = 2.65(5) - 1.69(3) = 8.2\%$$

$$C_4AF = 3.04(Fe_2O_3)$$

$$C_4AF = 3.04(3) = 9.1\%$$

L.S.F =
$$\frac{CaO - 0.7(SO_3)}{2.8(SiO_2) + 1.2 (Al_2O_3) + 0.65 (Fe_2O_3)} \dots (0.66-1.02)$$

L.S.F =
$$\frac{64-(0.7*2.8)}{2.8(21)+1.2(5)+0.65(3)} = 0.9 \text{ (o.k)}$$

- 1- This type of cement is O.P.C because the percentage of the four major compounds is identical with the percentage of major compounds for O.P.C. also, the L.S.F value is also identical to that L.S.F of Ordinary Portland Cement.
- 2- This type of cement use in constructions when there is no exposure to sulfates in the soil or groundwater.

Ex2: Chemical analysis for type of cement as shown in table:

- 1- What is the type of cement?
- 2- Is the cement accepted with limitation of portland cement?

Oxide	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	SO ₃	Na ₂ O	K ₂ O
%	36.2	12.6	3	1.56	2	1.45	1.53	0.43

Sum of oxide = 58.8 %

$$L.O.I = 100 - \sum Oxide$$

$$L.O.I = 100 - 58.8 = 41.2 \%$$

New Oxide Value =
$$\frac{old\ Oxide\ value}{sum\ of\ oxide} * 100\%$$

$$[CaO]_{new} = \frac{36.2}{58.8} * 100\% = 61.2\%$$

Oxide	CaO	SiO ₂	Al_2O_3	Fe ₂ O ₃	MgO	SO_3	Na ₂ O	K ₂ O
%	61.6	21.4	5.1	2.7	3.4	2.5	2.6	0.7

Sum of oxide = 100 %

$$C_3S = 4.07(CaO) - 7.60(SiO_2) - 6.72(Al_2O_3) - 1.43(Fe_2O_3) - 2.85(SO_3)$$

$$C_3S = 4.07(61.6) - 7.60(21.4) - 6.72(5.1) - 1.43(2.7) - 2.85(2.5) = 42.8\%$$

$$C_2S = 2.87(SiO_2) - 0.754(C_3S)$$

$$C_2S = 2.87(21.4) - 0.754(42.8) = 29.1\%$$

$$C_3A = 2.65(Al_2O_3) - 1.69(Fe_2O_3)$$

$$C_3A = 2.65(5.1) - 1.69(2.7) = 9\%$$

$$C_4AF = 3.04(Fe_2O_3)$$

$$C_4AF = 3.04(2.7) = 8.2\%$$

L.S.F =
$$\frac{CaO - 0.7(SO_3)}{2.8(SiO_2) + 1.2 (Al_2O_3) + 0.65 (Fe_2O_3)} \dots (0.66-1.02)$$

L.S.F =
$$\frac{61.6 - (0.7 * 2.5)}{2.8(21.4) + 1.2(5.1) + 0.65(2.7)} = 0.9 \text{ (o.k)}$$

- $(Al_2O_3/Fe_2O_3) = 1.889 > 0.66 \text{ (o.k)}$
- Percentage of Mgo = 3.4% < 5% (o.k)
- 1- This type of cement is O.P.C because the percentage of the four major compounds is identical with the percentage of major compounds for O.P.C. also, the L.S.F value is also identical to that L.S.F of Ordinary Portland Cement.
- 2- This type of cement use in constructions when there is no exposure to sulfates in the soil or groundwater.
- Ex3: A type of cement it contains (2/3 limestone and 1/3 clay) and the percentage of oxides in each material as in the table below
 - 1-What is the type of cement?
 - 2-Is the cement accepted with limitation of portland cement?

Oxide %	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	SO_3	Na ₂ O	K ₂ O
Lime Stone	50	2	2	1	3	1	0.5	0.5
Clay	15	45	6	2	4	1	0.5	0.5

Sol:

Sum of lime stone oxide = 60 %

Sum of clay oxide = 74 %

L.O.I [lime stone] = $100 - \sum Oxide$ [lime stone] = 100 - 60 = 40 %

L.O.I $[clay] = 100 - \sum Oxide[clay] = 100 - 74 = 26 \%$

New Oxide [lime stone] = Old Oxide [lime stone] * $\frac{2/3}{1-L.O.I_{Lime stone}}$

Assist Lecturer: Alaa Hussein Ali

New Oxide [lime stone] = Old Oxide [lime stone] $*\frac{2/3}{1-0.4}$

New Oxide [lime stone] = Old Oxide [lime stone] * 1.11

New Oxide [clay] = Old Oxide [clay] *
$$\frac{1/3}{1 - L.0.I_{clay}}$$

New Oxide
$$[clay]$$
 = Old Oxide $[clay]$ * $\frac{1/3}{1-0.26}$

New Oxide [clay] = Old Oxide [clay] * 0.45

Oxide %	Lime Stone	Clay	New. Oxide) Lime	New. Oxide) Clay	Sum. Oxide %
CaO	50	15	55.56	6.76	62.32
SiO ₂	2	45	2.22	20.27	22.49
Al_2O_3	2	6	2.22	2.7	4.92
Fe ₂ O ₃	1	2	1.11	0.9	2.01
MgO	3	4	3.33	1.8	5.13
SO ₃	1	1	1.11	0.45	1.56
Na ₂ O	0.5	0.5	0.56	0.23	0.79
K ₂ O	0.5	0.5	0.56	0.23	0.79

Sum. of Oxide = 100 %

$$C_3S = 4.07(CaO) - 7.60(SiO_2) - 6.72(Al_2O_3) - 1.43(Fe_2O_3) - 2.85(SO_3)$$

$$C_3S = 4.07(62.32) - 7.60(22.49) - 6.72(4.92) - 1.43(2.01) - 2.85(1.56) = 42.3 \%$$

$$C_2S = 2.87(SiO_2) - 0.754(C_3S)$$

$$C_2S = 2.87(22.49) - 0.754(42.3) = 32.6 \%$$

$$C_3A = 2.65(Al_2O_3) - 1.69(Fe_2O_3)$$

$$C_3A = 2.65(4.92) - 1.69(2.01) = 9.6 \%$$

Assist Lecturer: Alaa Hussein Ali

$$C_4AF = 3.04(Fe_2O_3)$$

$$C_4AF = 3.04(2.01) = 6.1 \%$$

L.S.F =
$$\frac{CaO - 0.7(SO_3)}{2.8(SiO_2) + 1.2 (Al_2O_3) + 0.65 (Fe_2O_3)} \dots (0.66-1.02)$$

L.S.F =
$$\frac{62.32 - (0.7*1.56)}{2.8(22.49) + 1.2(4.92) + 0.65(2.01)} = 0.872$$
 (o.k)

Type of cement is O.P.C

Ex4: After conducting a chemical analysis for a type of cement, it was found that the percentages of oxides in the raw materials used in the cement manufacture, as shown in the table below.

- 1- What is the type of cement?
- 2- Is the cement accepted with limitation of portland cement?

Oxide %	CaCO ₃	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgCO ₃	SO ₃	Alkali	H ₂ O
Lime Stone	82	2	2	3	8	1.5	1	1.6
Clay	26	44.5	4	4	8	1.5	1	6

$$CaCO_3 \longrightarrow CaO + CO_2$$

molecular weight
$$_{(CaO)} = (16*1)+(40*1) = 56$$

Weight of CaO (Lime) =
$$\frac{56*82}{100}$$
 = 45.92 %

Weight of CaO
$$_{\text{(Clay)}} = \frac{56*26}{100} = 14.56 \%$$

$$MgCO_3 \longrightarrow MgO + CO_2$$

molecular weight
$$_{(CaO)} = (16*1)+(24*1) = 40$$

Weight of MgO
$$_{(Lime)} = \frac{40*8}{100} = 3.2 \%$$

Weight of MgO
$$_{(Clay)} = \frac{40*8}{100} = 3.2 \%$$

Chapter two

Example of cement oxides

Oxide %	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	SO ₃	Alkali	H ₂ O
Lime Stone	45.92	2	2	3	3.2	1.5	1	1.6
Clay	14.56	44.5	4	4	3.2	1.5	1	6

Sum. of lime stone oxide = 60.22 %

Sum. of clay oxide = 78.76 %

L.O.I [lime stone] = $100 - \sum Oxide$ [lime stone] = 100 - 60.22 = 39.78 %

L.O.I $[clay] = 100 - \sum Oxide[clay] = 100 - 78.76 = 21.24 \%$

New Oxide [lime stone] = Old Oxide [lime stone] * $\frac{2/3}{1-L.O.I_{Lime stone}}$

New Oxide [lime stone] = Old Oxide [lime stone] * $\frac{2/3}{1-0.3978}$

New Oxide [lime stone] = Old Oxide [lime stone] * 1.107

New Oxide [clay] = Old Oxide [clay] * $\frac{1}{1 - L.O.I_{clay}}$

New Oxide [clay] = Old Oxide [clay] * $\frac{1/3}{1-0.2124}$

New Oxide [clay] = Old Oxide [clay] * 0.423

Oxide %	Lime Stone	Clay	New. Oxide) Lime	New. Oxide) Clay	Sum. Oxide %
CaO	45.92	14.56	50.84	6.16	57
SiO ₂	2	44.5	2.21	18.83	21.04
Al_2O_3	2	4	2.21	1.69	3.9
Fe ₂ O ₃	3	4	3.32	1.69	5.01
MgO	3.2	3.2	3.54	1.35	4.89
SO_3	1.5	1.5	1.66	0.63	2.29
Alkali	1	1	1.11	0.42	1.53
H ₂ O	1.6	6	1.77	2.54	4.31

Sum. of Oxide = 99.97 % (O.K)

$$C_3S = 4.07(CaO) - 7.60(SiO_2) - 6.72(Al_2O_3) - 1.43(Fe_2O_3) - 2.85(SO_3)$$

$$C_3S = 32.2 \%$$

$$C_2S = 2.87(SiO_2) - 0.754(C_3S)$$

$$C_2S = 36.1$$

$$C_3A = 2.65(Al_2O_3) - 1.69(Fe_2O_3)$$

$$C_3A = 1.9 \%$$

$$C_4AF = 3.04(Fe_2O_3)$$

$$C_4AF = 15.2 \%$$

L.S.F =
$$\frac{CaO - 0.7(SO_3)}{2.8(SiO_2) + 1.2 (Al_2O_3) + 0.65 (Fe_2O_3)} \dots (0.66-1.02)$$

$$L.S.F = 0.829$$
 (o.k)