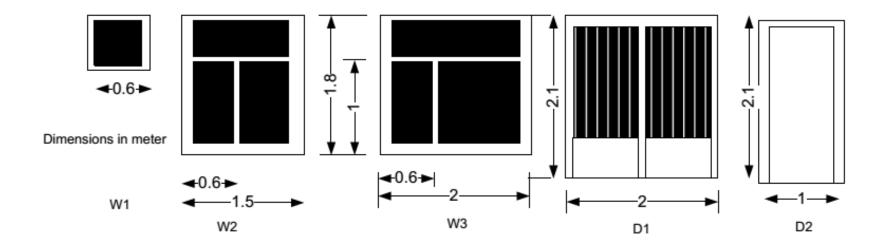
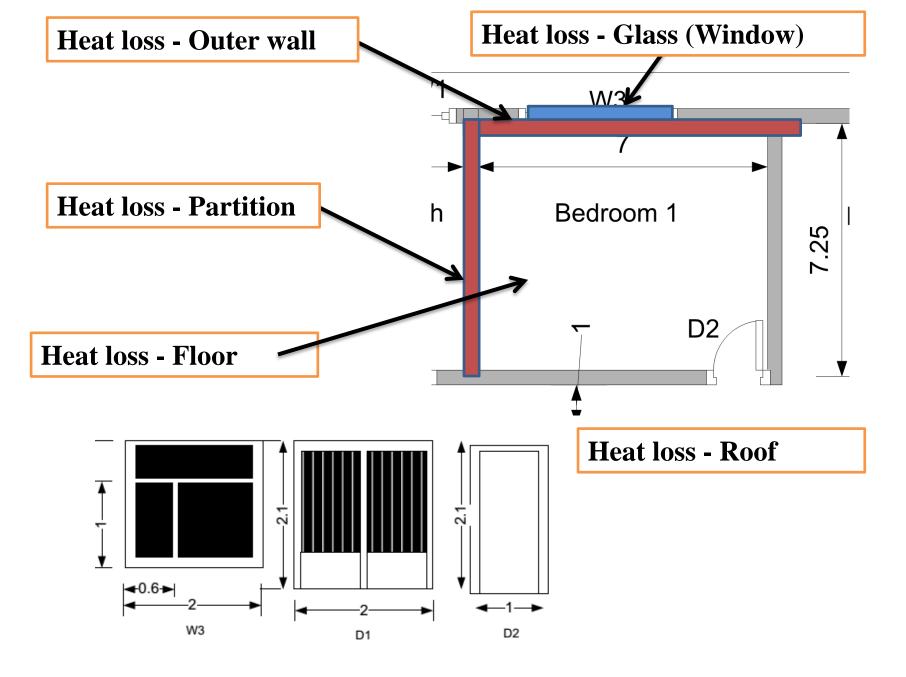


Refrigeration and Air conditioning Engineering. 3rd year – refrigeration and Air conditioning Course Lecture -9- part2 Heating Load Estimation


M.Sc. Zahraa F. Hussain

Example 3.

A single-family detached house shown in Fig. 1a is located in Iraq- Baghdad. The Wall is built from of 13 mm cement plaster, 20 cm common brick and 10 mm gypsum plaster. While the Partition is built from 10 cm common brick and 10 mm gypsum plaster on both sides. The Roof is built from outside to inside from 10 mm cement tail, 130 mm sand, 10 mm Expanded polyurethane, Asphalt shingles, 150 mm concrete and 20 mm gypsum. The floor consist from outer to inner from carp, cement tile of 25 mm thick., heavy concert of 15 cm thick. Ceiling height is 3 m Fenestration. Clear single glass, 3 mm thick. Assume closed, medium-color well fitted, aluminum frame. *Doors* made of wood of 25 mm thickness. *Occupancy*. Four persons, based on two for the master bedroom and one for each additional bedroom. Assign to the living room. Llights. Assume 480 W for the kitchen, and 480 W for living room, assign 50% to bed room 1, 25% for bedrooms 2 and 3. *Appliances*: there is one TV,PC laptop, laser printer, and Coffee brewer in living room, The construction of the house is considered medium. Find the sensible, latent, and total Heating load; size the heating unit; and compute the air quantity for each room.



Msc. Zahraa F. Hussain

Area of Building

Room name	Net		V	Vinc	dows	5	Floor (m ²)	Roof (m ²)	Perimeter	Partition			
Патте	WE		N	S	$oxed{\mathbf{W} \mid \mathbf{E} \mid \mathbf{N} \mid}$		S Door		(111)				
Bed R1	17.4	,	-	-	3.6	1	-	•	2.1	50.75	50.75	2(7+7.25)=28.5	21.5
Living room	12.9	,	20.55		3.6	,	-	1	4.2	45.38	45.34	27.5	-
Bed R2	-	10.8	-	8.55	1	2.7	-	2.7	2.1	16.88	16.88	16.5	11.4
Bed R3	1	10.8		-		2.7			2.1	16.88	16.88	16.5	11.4 11.25

The floor consist from outer to inner from carp, cement tile of 25 mm thick., heavy concert of 15 cm thick

Description	L	K	P	R	Mass
	mm	W/mK	kg/m ³	m^2K/W	kg/m ²
high density concrete	150	1.731	2243	0.088	341.60
Inside surface resistance		0.000		0.121	0.00
Carpet and Rubber Pad	25		1	0.71	
Concrete Tile	10	0.27	1921	0.037	23

Carpet

$$R_{\text{Carprt}} = 0.71 \ m^2 K/W$$

Concrete Tile

 $x = 250 \, mm$

 $k_{\rm tile.} = 0.1$

$$R_{\text{tile.}} = \frac{x}{k} = \frac{0.025}{0.27} = 0.1 \ m^2 K/W$$

high density concrete

 $x = 150 \, mm$

$$R_{\rm Conc} = 0.088 \qquad m^2 K/W$$

Inside resistance

$$R_i = 0.121 \; \frac{m^2 K}{W}$$

Overall heat transfer coefficient and weight of exposed roof

$$R_e = R_i + R_{carpt} + R_{tile} + R_{conc}$$

$$R_e = 0.121 + 0.71 + 0.1 + 0.088 = 1.019$$

$$U_{floor} = \frac{1}{1.019} = 0.98 W/m^2 K$$

Outer wall	Partition	Roof	Window	Door	Floor
U	U	\mathbf{U}	U	U	U
W/m².K	W/m².K	W/m ² .K	W/m².K	W/m².K	W/m ² .K
1.916	2.45	1.457	6.42	3.92	0.98

Heating Load Building: Home Room name: Bed Room 1

Indoor Design condition 23°C & RH 50 % Outdoor Design condition 1.5 °C & RH 84%

	Heat Loss											
Eq	Q		U		A		ΔT					
1	Q/ Glass	=	6.42	×	3.6	×	21.5	=	496.908 W			
2	Q/ Door	=		×		×		=	0			
3	Q/Wall	=	1.916	×	17.4	×	21.5	=	716.776 W			
4	Q/Roof	=	1.457	×	50.75	×	21.5	=	1589.77 W			
5	Q/Partitions	=	2.45	×	21.75	×	12.5	=	666 W			

	Floor										
	Q		U		A		ΔT				
6	Q/Floor edges	=	0.8	×	28.5	×	13	=	296.4 W		
7	Q/Floor base area		0.98	×	50.75	×	13	П	647		

Ventilation and infiltration												
	Lc	=	Nos.	X	fac		(L +	H)	+	Н		
	Lc		1		2		0.6	1		0		3.2
	IOA	Ш	3.2	×	0.3						0.96	
	V	=	2	X	2.5			1	=		5	
	VOA	=	Lit/s	+				Lit/s	=		5.96	
			F		VOA			ΔT				
7	OASH	Ш	1.21	×	5.96		× 21.5		=		155.049	W
			F		VOA			Δω				
8	OALH	Ш	3000	×	5.96		×	0.00506	П		90.4728	W
	OATH	Ш		+			=		Ш		245.522	\mathbf{W}
10	Total Load	=							=		3068	W